已知二次函數(shù)y=ax2+bx+c,其中a>0,b2-4a2c2=0,它的圖象與x軸只有一個(gè)交點(diǎn),交點(diǎn)為A,與y軸交于點(diǎn)B,且AB=2.
(1)求二次函數(shù)解析式;
(2)當(dāng)b<0時(shí),過A的直線y=x+m與二次函數(shù)的圖象交于點(diǎn)C,在線段BC上依次取D、E兩點(diǎn),若DE2=BD2+EC2,試確定∠DAE的度數(shù),并簡述求解過程.
分析:(1)由于拋物線與x軸只有一個(gè)交點(diǎn),那么根的判別式△=0,聯(lián)立b2-4a2c2=0,即可求出b的值及ac的關(guān)系式;將b的值代入拋物線的解析式中,即可用a、c表示出A、B的坐標(biāo),在Rt△OAB中,根據(jù)勾股定理可得到另一個(gè)關(guān)于a、c的關(guān)系式,聯(lián)立上面所得的a、c的關(guān)系式,即可得到a、c的值;由此可求出該拋物線的解析式;
(2)根據(jù)(1)題所得的b<0時(shí)拋物線的解析式,可求出A、B的坐標(biāo);根據(jù)A點(diǎn)的坐標(biāo)即可求出直線y=x+m的解析式,進(jìn)而可得到C點(diǎn)的坐標(biāo);若過C作CF⊥x軸于F,根據(jù)B、A、C的坐標(biāo),易證得△OAB、△BAC、△CAF都是等腰Rt△;在CF上截取CM=BD,易證得△ABD≌△ACM,可得AD=AM;已知DE2=BD2+EC2,在Rt△CEM中,根據(jù)勾股定理有:EC2+CM2=EM2,等量代換后可得到DE=ME,由此可證得△DAE≌△MAE,得∠DAE=∠EAM;而∠BAD=∠CAM,即∠BAC=∠DAM=90°,由此可得到∠DAE=45°.
解答:解法一:(1)∵y=ax2+bx+c的圖象與x軸只有一個(gè)交點(diǎn),
∴一元二次方程ax2+bx+c=0有兩個(gè)相等的實(shí)數(shù)根,
∴△=b2-4ac=0,(1分)
又∵b2-4a2c2=0,
∴4a2c2=4ac≥0,
由AB=2,得A與B不重合,
又∵a>0,
∴c>0,
∴ac=1,(1)
∴b2=4解得b=±2,(2分)
∴二次函數(shù)與x軸,y軸交點(diǎn)坐標(biāo)為A(
1
a
,0)B(0,c)或A(-
1
a
,0)B(0,c),
在Rt△ABO中,OA2+OB2=AB2,OA=
1
a
,0B=c,AB=2,
∴(
1
a
2+c2=4,
整理得1+a2c2=4a2;(2)
把(1)代入(2),
解得a=
2
2
或a=-
2
2
(舍),
把a(bǔ)=
2
2
代入(1)
得c=
2
,(4分)
∴二次函數(shù)解析式為y=
2
2
x2+2x+
2
或y=
2
2
x2-2x+
2
.(5分)

(2)當(dāng)b<0時(shí),由二次函數(shù)的解析式得A(
2
,0)B(0,
2
),(6分)
又∵直線y=x+m過點(diǎn)A(
2
,0),
∴m=-
2
,y=x-
2
,
y=
2
2
x2-2x+
2
y=x-
2

解得,直線與二次函數(shù)圖象交點(diǎn)C的坐標(biāo)為(2
2
,
2
),(8分)
過C點(diǎn)作CF⊥x軸,垂足為F,可推得AB=AC,∠BAC=90°(如圖所示)(9分)
精英家教網(wǎng)在CF上截取CM=BD,連接EM、AM,則EC2+CM2=EM2,
∵CE2+BD2=DE2
∴EM=DE,
可證△ABD≌△ACM,
從而可證△DAE≌△MAE,(10分)
∴∠DAB=∠CAM,∠DAE=∠EAM,
∴∠DAM=∠BAC=90°,
∴∠DAE=45°.(11分)

解法二:(1)∵y=ax2+bx+c的圖象與x軸只有一個(gè)交點(diǎn),
∴一元二次方程ax2+bx+c=0有兩個(gè)相等的實(shí)數(shù)根,
∴△=b2-4ac=0,(1分)
∵b2-4a2c2=0,
∴b=±2ac,
∴b2±2b=0,
解得b=2,b=0;b=-2,b=0,
∵b=0時(shí),A與B兩點(diǎn)重合
∴b=0舍去.(2分),
以下同解法一.
點(diǎn)評(píng):此題是二次函數(shù)的綜合題型,涉及到根的判別式、勾股定理、二次函數(shù)解析式的確定、函數(shù)圖象交點(diǎn)坐標(biāo)的求法以及全等三角形的判定和性質(zhì)等重要知識(shí),能夠正確地構(gòu)建與已知和所求相關(guān)的全等三角形是解答(2)題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點(diǎn)A.B,與y軸交于點(diǎn) C.

(1)寫出A. B.C三點(diǎn)的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級(jí)上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個(gè)根

C.a+b+c=0          D.當(dāng)x<1時(shí),y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對(duì)稱軸為直線x=1,它的部分自變量與函數(shù)值y的對(duì)應(yīng)值如下表,寫出方程ax2+bx+c=0的一個(gè)正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯(cuò)誤的是:

(A)圖像關(guān)于直線x=1對(duì)稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個(gè)根

(D)當(dāng)x<1時(shí),y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊答案