如圖,反比例函數(shù)的圖象經(jīng)過點A、B,點A的坐標(biāo)為(1,3),點B的縱坐標(biāo)為1,點C的坐標(biāo)為(2,0).
(Ⅰ)求反比例函數(shù)的解析式;
(Ⅱ)一次函數(shù)的圖象經(jīng)過點B、C,求一次函數(shù)的解析式;
(Ⅲ)當(dāng)反比例函數(shù)的值大于一次函數(shù)的值時,x的取值范圍是_________.

解答:(Ⅰ)設(shè)反比例函數(shù)的解析式為y=(k≠0),
∵A(1,3)在反比例函數(shù)圖象上,
∴3=,即k=3,
則反比例解析式為y=;
(Ⅱ)設(shè)一次函數(shù)的解析式為y=mx+n(m≠0),
∵B在反比例圖象上,且B縱坐標(biāo)為1,
∴設(shè)B(b,1),代入反比例解析式得:b=3,即B(3,1),
將B(3,1)和C(2,0)代入一次函數(shù)解析式得:
解得:,
則一次函數(shù)解析式為y=x-2;
(Ⅲ)聯(lián)立兩函數(shù)解析式得:,
解得:,
∴兩函數(shù)交點橫坐標(biāo)分別為-1和3,
利用函數(shù)圖象得:當(dāng)反比例函數(shù)的值大于一次函數(shù)的值時,x的取值范圍是x<-1或0<x<3.
故答案為:x<-1或0<x<3
分析:(Ⅰ)將A坐標(biāo)代入反比例函數(shù)的解析式求出k的值,即可確定出反比例解析式;
(Ⅱ)將B縱坐標(biāo)代入一次函數(shù)解析式求出橫坐標(biāo),確定出B坐標(biāo),由B與V坐標(biāo)即可求出一次函數(shù)的解析式;
(Ⅲ)聯(lián)立兩函數(shù)解析式求出兩交點坐標(biāo),根據(jù)兩交點橫坐標(biāo),利用圖象即可求出x的范圍.
點評:此題考查了一次函數(shù)與反比例函數(shù)的交點問題,涉及的知識有:待定系數(shù)法求函數(shù)解析式,坐標(biāo)與圖形性質(zhì),一次函數(shù)與坐標(biāo)軸的交點,利用了數(shù)形結(jié)合的思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南昌)如圖,等腰梯形ABCD放置在平面坐標(biāo)系中,已知A(-2,0)、B(6,0)、D(0,3),反比例函數(shù)的圖象經(jīng)過點C.
(1)求點C的坐標(biāo)和反比例函數(shù)的解析式;
(2)將等腰梯形ABCD向上平移2個單位后,問點B是否落在雙曲線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•和平區(qū)一模)如圖,反比例函數(shù)的圖象經(jīng)過點A、B,點A的坐標(biāo)為(1,3),點B的縱坐標(biāo)為1,點C的坐標(biāo)為(2,0).
(Ⅰ)求反比例函數(shù)的解析式;
(Ⅱ)一次函數(shù)的圖象經(jīng)過點B、C,求一次函數(shù)的解析式;
(Ⅲ)當(dāng)反比例函數(shù)的值大于一次函數(shù)的值時,x的取值范圍是
x<-1或0<x<3
x<-1或0<x<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湖里區(qū)一模)如圖,反比例函數(shù)y=
k
x
(k為常數(shù),k≠0)的圖象經(jīng)過點A(-1,4),過點A作直線AC與函數(shù)y=
k
x
的圖象交于另一點B,與x軸交于點C.
(1)若點B的縱坐標(biāo)為2,求點B到y(tǒng)軸的距離;
(2)若AB=3BC.求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,反比例函數(shù)的圖象和一次函數(shù)的圖象交于A和B兩點,且點A的坐標(biāo)為(3,1),點B的坐標(biāo)為(-1,-3),一次函數(shù)圖象與X軸交于點C.連接OA.
(1)求該反比例函數(shù)的解析式和一次函數(shù)的解析式;
(2)求△OAC的面積;
(3)請觀察圖象,直接回答x為何值時,反比例函數(shù)的值大于一次函數(shù)的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,反比例函數(shù)的圖象與直線在第一象限交于點為直線上的兩點,點的橫坐標(biāo)為2,點的橫坐標(biāo)為3.為反比例函數(shù)圖象上的兩點,且平行于軸.

(1)直接寫出的值;

(2)求梯形的面積.

 


查看答案和解析>>

同步練習(xí)冊答案