如圖,CD是⊙O的直徑,弦AB⊥CD于E,F(xiàn)是DC延長線上的一點(diǎn),連接BF.若AE=數(shù)學(xué)公式,EO=1,作業(yè)寶CF=2.
(1)求⊙O的半徑.
(2)求證:直線BF是⊙O的切線.

解:(1)連接OB.
∵CD是⊙O的直徑,弦AB⊥CD于E,
∴BE=AE=,∠OEB=90°,
在Rt△OEB中:OB===2,
∴⊙O的半徑為2;

(2)∵CF=2,OC=B=2,
∴OF=OC+CG=4,
,
,
∵∠EOB=∠BOF,
∴△OBE∽△OFB,
∴∠OBF=∠OEB=90°,
∴OB⊥BF,
∴直線BF是⊙O的切線.
分析:(1)由CD是⊙O的直徑,弦AB⊥CD于E,根據(jù)垂徑定理,即可求得BE的長,然后由勾股定理,即可求得⊙O的半徑OB的長.
(2)由CF=2即可求得OF的長,即可求得,又由∠BOE是公共角,即可得△OBE∽△OFB,則∠OBF=∠OEB=90°,繼而證得直線BF是⊙O的切線.
點(diǎn)評:此題考查了垂徑定理與圓的切線的判定,以及勾股定理等知識.此題難度不大,解題的關(guān)鍵是數(shù)形結(jié)合思想的應(yīng)用與輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖所示,工人師傅做鋁合金窗框分下面三個(gè)步驟進(jìn)行:
(1)先截出兩對符合規(guī)格的鋁合金窗料(如圖①所示),使AB=CD,EF=GH.
(2)擺放成如圖②的四邊形,則這時(shí)窗框的形狀是
平行四邊形
,根據(jù)的數(shù)學(xué)道理是
兩組對邊分別相等的四邊形是平行四邊形

(3)將直尺緊靠窗框的一個(gè)角(如圖③),調(diào)整窗框的邊框,當(dāng)直角尺的兩條直角邊與窗框無縫隙時(shí)(如圖④,說明窗框合格,這時(shí)窗框是
矩形
,根據(jù)的數(shù)學(xué)道理是
有一個(gè)角是直角的平行四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、工人師傅做鋁合金窗框分下面三個(gè)步驟進(jìn)行:
(1)先截出兩對符合規(guī)格的鋁合金窗料(如圖①),使AB=CD,EF=GH;
(2)擺放成如圖②的四邊形,則這時(shí)窗框的形狀是
平行四邊形
形,根據(jù)數(shù)學(xué)道理是:
兩組對邊分別相等的四邊形是平行四邊形
;
(3)將直角尺靠緊窗框的一個(gè)角(如圖③),調(diào)整窗框的邊框,當(dāng)直角尺的兩條直角邊與窗框無縫隙時(shí)(如圖④),說明窗框合格,這時(shí)窗框是
矩形
形,根據(jù)的數(shù)學(xué)道理是:
有一個(gè)角是直角的平行四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•撫順)在與水平面夾角是30°的斜坡的頂部,有一座豎直的古塔,如圖是平面圖,斜坡的頂部CD是水平的,在陽光的照射下,古塔AB在斜坡上的影長DE為18米,斜坡頂部的影長DB為6米,光線AE與斜坡的夾角為30°,求古塔的高(
2
≈1.4,
3
≈1.7
).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,某水庫堤壩的橫斷面為梯形,背水坡AD的坡比(坡比是斜坡的鉛直距離與水平距離的比)為1:1.5,迎水坡BC的坡比為1:
3
,壩頂寬CD為3m,壩高CF為10m,則壩底寬AB約為(  )(
3
≈1.732,保留3個(gè)有效數(shù)字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇武進(jìn)區(qū)九年級上第一次月考數(shù)學(xué)試卷(帶解析) 題型:填空題

工人師傅做鋁合金窗框分下面三個(gè)步驟進(jìn)行:
(1)先截出兩對符合規(guī)格的鋁合金窗料(如圖①),使AB=CD,EF=GH;
(2)擺放成如圖②的四邊形,則這時(shí)窗框的形狀是______形,根據(jù)的數(shù)學(xué)原理是:_______________________;
(3)將直角尺靠緊窗框的一個(gè)角(如圖③),調(diào)整窗框的邊框,當(dāng)直角尺的兩條直角邊與窗框無縫隙時(shí)(如圖④),說明窗框合格,這時(shí)窗框是_______形,根據(jù)的數(shù)學(xué)原理是:_____________________.

查看答案和解析>>

同步練習(xí)冊答案