如圖,E是BC的中點(diǎn),∠1=∠2,AE=DE.求證:AB=DC.

證明:∵E是BC的中點(diǎn),
∴BE=CE.
在△ABE和△DCE中,
∵BE=CE,∠1=∠2,AE=DE,
∴△ABE≌△DCE.
∴AB=DC.
分析:由已知我們可以利用SAS來判定△ABE≌△DCE,從而得到AB=DC.
點(diǎn)評:此題主要考查學(xué)生對全等三角形的性質(zhì)及全等三角形的判定方法的掌握情況.判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、已知:如圖,E是BC的中點(diǎn),∠1=∠2,∠A=∠D.
求證:AB=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,E是BC的中點(diǎn),點(diǎn)A在DE上,且∠BAE=∠CDE.
求證:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、閱讀下面的題目及分析過程,并按要求進(jìn)行證明.
已知:如圖,E是BC的中點(diǎn),點(diǎn)A在DE上,且∠BAE=∠CDE,求證:AB=CD.
(1)延長DE到F,使得EF=DE;
(2)作CG⊥DE于G,BF⊥DE于F交DE的延長線于F;
(3)過C點(diǎn)作CF∥AB,交DE的延長線于F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面的題目及分析過程,并按要求進(jìn)行證明.
已知:如圖,E是BC的中點(diǎn),點(diǎn)A在DE上,且∠BAE=∠CDE,求證:AB=CD.
分析:證明兩條線段相等,常用的一般方法是應(yīng)用全等三角形或等腰三角形的判定和性質(zhì),觀察本題中要證明的兩條線段,它們不在同一個(gè)三角形中,且它們分別所在的兩個(gè)三角形也不全等.因此,要證明AB=CD,必須添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形或等腰三角形.
現(xiàn)給出如下三種添加輔助線的方法,請任意選擇其中兩種對原題進(jìn)行證明.

圖(1):延長DE到F使得EF=DE
圖(2):作CG⊥DE于G,BF⊥DE于F交DE的延長線于F
圖(3):過C點(diǎn)作CF∥AB交DE的延長線于F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,E是BC的中點(diǎn),∠1=∠2,AE=DE.AB和DC相等嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案