【題目】某商場銷售一種品牌羽絨服和防寒服,其中羽絨服的售價是防寒服售價的5倍還多100元,20141月份(春節(jié)前期)共銷售500件,羽絨服與防寒服銷量之比是41,銷售總收入為58.6萬元.

1)求羽絨服和防寒服的售價;

2)春節(jié)后銷售進入淡季,20142月份羽絨服銷量下滑了6m%,售價下滑了4m%,防寒服銷量和售價都維持不變,結果銷售總收入下降為16.04萬元,求m的值.

【答案】1)羽絨服和防寒服的售價為:1400元,260元;(2m的值為10

【解析】

1)根據(jù)題意求出羽絨服與防寒服銷量,進而表示出兩種服裝的價格,再找出等量關系求出即可;
2)根據(jù)題意表示出羽絨服的銷量與價格,進而結合銷售總收入下降為16.04萬元得出等式求出即可.

解:(1)設防寒服的售價為x元,則羽絨服的售價為5x+100元,

20141月份(春節(jié)前期)共銷售500件,羽絨服與防寒服銷量之比是41

∴羽絨服與防寒服銷量分別為:400件和100件,

根據(jù)題意得出:4005x+100+100x58.6萬,

解得:x260,

5x+1001400(元),

答:羽絨服和防寒服的售價為:1400元,260元;

2)∵20142月份羽絨服銷量下滑了6m%,售價下滑了4m%,防寒服銷量和售價都維

持不變,

結果銷售總收入下降為16.04萬元,

40016m%×1400×14m%+100×260160400

解得:m110,m2(不合題意舍去),

答:m的值為10

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,2)與(0,3)之間(不包括這兩點),對稱軸為直線x=2.下列結論:abc<0;9a+3b+c>0;③若點M(,y1),點N(,y2)是函數(shù)圖象上的兩點,則y1<y2;<a<﹣其中正確結論有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)

(1)求證:無論m為任何實數(shù),此函數(shù)圖象與x軸總有兩個交點;

(2)若此函數(shù)圖象與x軸的一個交點為(-3,0),求此函數(shù)圖象與x軸的另一個交點坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九(1)班和九(2)班各有5人參加了數(shù)學競賽的初賽,成績如下(單位:分)(1)班:80,45,8940,98;(2)班:7890,60,7569.從能夠獲獎的角度來看,你認為應派(  )參加復賽.

A. (1) B. (2) C. 都可以 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)如圖,在平面直角坐標系xOy中,拋物線)與x軸交于A,B兩點(點A在點B的左側),經過點A的直線ly軸負半軸交于點C,與拋物線的另一個交點為D,且CD=4AC

1)直接寫出點A的坐標,并求直線l的函數(shù)表達式(其中kb用含a的式子表示);

2)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為,求a的值;

3)設P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A,DP,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:在平面直角坐標系中,圖形G上點Pxy)的縱坐標y與其橫坐標x的差yx稱為P點的坐標差,而圖形G上所有點的坐標差中的最大值稱為圖形G特征值

1)①點A1,3)的坐標差   ;

②拋物線y=﹣x2+3x+4特征值   ;

2)某二次函數(shù)y=﹣x2+bx+cc≠0)的特征值為﹣1,點Bm,0)與點C分別是此二次函數(shù)的圖象與x軸和y軸的交點,且點B與點C坐標差相等.

①直接寫出m   ;(用含c的式子表示)

②求此二次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形 ABCD 中,點 E,F 分別在 BC AB 上,BE3,AF2BF4,將△ BEF 繞點 E 順時針旋轉,得到△GEH,當點 H 落在 CD 邊上時,F,H 兩點之間的距離為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸l為x=﹣1.

(1)求拋物線的解析式并寫出其頂點坐標;

(2)若動點P在第二象限內的拋物線上,動點N在對稱軸l上.

當PANA,且PA=NA時,求此時點P的坐標;

當四邊形PABC的面積最大時,求四邊形PABC面積的最大值及此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,弦CE⊥AB于點F,過點D的切線交EC的延長線于點G,連接AD,分別交CF、BC于點P、Q,連接AC.給出下列結論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心;④APAD=CQCB.其中正確的是_____(寫出所有正確結論的序號).

查看答案和解析>>

同步練習冊答案