二次函數(shù)圖像的最低點(diǎn)坐標(biāo)是      
(0,-3)

試題分析:由二次函數(shù)圖像可知,該拋物線的開口向上,所以最低點(diǎn)在對稱軸上,因?qū)ΨQ軸為y軸,所以當(dāng)x=0,y=-3,所以最低點(diǎn)坐標(biāo)是(0,-3).
點(diǎn)評:該題是?碱},主要考查學(xué)生對二次函數(shù)解析式和拋物線圖像理解,建議學(xué)生通過畫圖直觀理解問題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某校八年級學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作.已知該水果的進(jìn)價(jià)為8元/千克,下面是他們在活動(dòng)結(jié)束后的對話.
小麗:如果以10元/千克的價(jià)格銷售,那么每天可售出300千克.
小強(qiáng):如果每千克的利潤為3元,那么每天可售出250千克.
小紅:如果以13元/千克的價(jià)格銷售,那么每天可獲取利潤750元.
【利潤=(銷售價(jià)-進(jìn)價(jià))銷售量】
(1)請根據(jù)他們的對話填寫下表:
銷售單價(jià)x(元/kg)
10
11
13
銷售量y(kg)
 
 
 
(2)請你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價(jià)x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(3)設(shè)該超市銷售這種水果每天獲取的利潤為W元,求W與x的函數(shù)關(guān)系式.當(dāng)銷售單價(jià)為何值時(shí),每天可獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線 經(jīng)過A(2,0). 設(shè)頂點(diǎn)為點(diǎn)P,與x軸的另一交點(diǎn)為點(diǎn)B

(1)求b的值和點(diǎn)PB的坐標(biāo);
(2)如圖,在直線上是否存在點(diǎn)D,使四邊形OPBD為平行四邊形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由;
(3)在軸下方的拋物線上是否存在點(diǎn)M,使△AMP≌△AMB?如果存在,試舉例驗(yàn)證你的猜想;如果不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在△ABC中,∠A = 90°,,經(jīng)過這個(gè)三角形重心的直線DE // BC,分別交邊AB、AC于點(diǎn)D和點(diǎn)E,P是線段DE上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P分別作PMBC,PFAB,PGAC,垂足分別為點(diǎn)M、F、G.設(shè)BM = x,四邊形AFPG的面積為y

(1)求PM的長;
(2)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)聯(lián)結(jié)MFMG,當(dāng)△PMF與△PMG相似時(shí),求BM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2+bx-2與x軸交于A、B兩點(diǎn),與y 軸交于C點(diǎn),且A(一1,0).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)若將上述拋物線先向下平移3個(gè)單位,再向右平移2個(gè)單位,請直接寫出平移后的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)yax2bx+c(a≠0)的圖象如圖,則下列結(jié)論中正確的是
A.ac>0            B.當(dāng)x>1時(shí),yx的增大而增大
C.2ab=1          D.方程ax2bx+c=0有一個(gè)根是x=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①是矩形包書紙的示意圖,虛線是折痕,四個(gè)角均為大小相同的正方形,正方形的邊長為折疊進(jìn)去的寬度.

(1)現(xiàn)有一本書長為25cm,寬為20cm,厚度是2cm,如果按照如圖①的包書方式,并且折疊進(jìn)去的寬度是3cm,則需要書包紙的長和寬分別為多少?(請直接寫出答案).
(2)已知數(shù)學(xué)課本長為26 cm,寬為18.5cm,厚為1cm,小明用一張面積為1260cm2的矩形書包紙按如圖①包好了這本書,求折進(jìn)去的寬度.
(3)如圖②,矩形ABCD是一張一個(gè)角(△AEF)被污損的書包紙,已知AB=30,BC=50,AE=12,AF=16,要使用沒有污損的部分包一本長為19,寬為16,厚為6的字典,小紅認(rèn)為只要按如圖②的剪裁方式剪出一張面積最大的矩形PGCH就能包好這本字典. 設(shè)PM=x,矩形PGCH的面積為y,當(dāng)x取何值時(shí)y最大?并由此判斷小紅的想法是否可行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,直線交x軸于點(diǎn)B,交y軸于點(diǎn)C,點(diǎn)A為x軸正半軸上一點(diǎn),AO=CO,△ABC的面積為12.

(1)求b的值;
(2)若點(diǎn)P是線段AB中垂線上的點(diǎn),是否存在這樣的點(diǎn)P,使△PBC成為直角三角形.若存在,試直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,試說明理由;
(3)點(diǎn)Q為線段AB上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q與點(diǎn)A、B不重合),QE∥AC,交BC于點(diǎn)E,以QE為邊,在點(diǎn)B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)的圖象如圖所示,其頂點(diǎn)坐標(biāo)為M(1,-4).

(1)求二次函數(shù)的解析式;
(2)將二次函數(shù)的圖象在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象,請你結(jié)合新圖象回答:當(dāng)直線與這個(gè)新圖象有兩個(gè)公共點(diǎn)時(shí),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案