【題目】分別畫出滿足下列條件的點:(尺規(guī)作圖,請保留作圖痕跡,不寫作法.作圖痕跡請加粗加黑!)

(1)在邊上找一點,使的距離相等;

(2)在射線上找一點,使.

【答案】(1)見解析;(2)見解析.

【解析】

1)根據(jù)角平分線的性質(zhì)可知,角平分線上的點到角兩邊的距離相等,故做角A的角平分線交BC于點P,P點即為所求.

2)根據(jù)垂直平分線的性質(zhì),垂直平分線上的點到線段兩端點的距離相等,故作出線段AC的垂直平分線,交射線AP與點Q,Q點即為所求.

作法:

1.以點A為圓心,以任意長為半徑畫弧,兩弧交角BAC兩邊于點M,N.

2.分別以點M,N為圓心,以大于MN的長度為半徑畫弧,兩弧交于點D.

3.作射線AD,交BC與點P,如圖所示,點即為所求.

(2)作法:

1.以線段的AC兩個端點為圓心,以大于AC一半長度為半徑分別在線段兩邊畫相交;

2得出相交弧的兩個交點F、E;

3用直尺連接這兩個交點,所畫得的直線與射線AP交與點Q,如圖所示,點即為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(模型建立)

如圖1,等腰直角三角形中,,,直線經(jīng)過點,過于點,過于點.

求證:;

(模型應(yīng)用)

①已知直線軸交于點,與軸交于點,將直線繞著點逆時針旋轉(zhuǎn)至直線,如圖2,求直線的函數(shù)表達(dá)式;

②如圖3,在平面直角坐標(biāo)系中,點,作軸于點,作軸于點,是線段上的一個動點,點是直線上的動點且在第一象限內(nèi).問點、、能否構(gòu)成以點為直角頂點的等腰直角三角形,若能,請直接寫出此時點的坐標(biāo),若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四張背面完全相同的紙牌、,其中正面分別畫有四個不同的幾何圖形(如圖),小華將這張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.

用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用、、、表示);

求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對稱圖形又是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校數(shù)學(xué)興趣小組成員小華對本班上學(xué)期期末考試數(shù)學(xué)成績(成績?nèi)≌麛?shù),滿分為分)作了統(tǒng)計分析,請你根據(jù)圖表提供的信息,解答下列問題:

分組

合計

頻數(shù)

頻率

表中________,________,________,________;

根據(jù)學(xué)校規(guī)定將有的學(xué)生參加校級數(shù)學(xué)冬令營活動,試確定參賽學(xué)生的最低資格線?

數(shù)學(xué)老師準(zhǔn)備從不低于分的學(xué)生中選人介紹學(xué)習(xí)經(jīng)驗,其中符合條件的小華、小麗同時被選中的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在RtABC中,ACB=90°,AC=BC,D為BC中點,CEAD于E,BFAC交CE的延長線于F.

(1)求證:ACD≌△CBF

(2)求證:AB垂直平分DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)我最喜愛的體育項目進(jìn)行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:

(1)該班共有_____名學(xué)生;

(2)補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,乒乓球部分所對應(yīng)的圓心角度數(shù)為_____

(4)學(xué)校將舉辦體育節(jié),該班將推選5位同學(xué)參加乒乓球活動,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt中,∠C=90°,AC=BC,在線段CB延長線上取一點P,AP為直角邊,點P為直角頂點,在射線CB上方作等腰 Rt, 過點DDECB,垂足為點E

1 依題意補全圖形;

2 求證: AC=PE;

3 連接DB,并延長交AC的延長線于點F,用等式表示線段CFAC的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC右側(cè)作射線CP,∠ACP=0°<<60°),點A關(guān)于射線CP的對稱點為點D,BDCP于點E,連接AD,AE.

1)求∠DBC的大小(用含的代數(shù)式表示);

2)在0°<<60°)的變化過程中,∠AEB的大小是否發(fā)生變化?如果發(fā)生變化,請直接寫出變化的范圍;如果不發(fā)生變化,請直接寫出∠AEB的大。

3)用等式表示線段AE,BD,CE之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形AOBC中,點A的坐標(biāo)是(﹣2,1),點C的縱坐標(biāo)是4,則B、C兩點的坐標(biāo)分別是 ( )

A. ,3)、(﹣,4) B. ,3)、(﹣,4)

C. ,)、(﹣,4) D. ,)、(﹣,4)

查看答案和解析>>

同步練習(xí)冊答案