如圖,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、AD的中點(diǎn),要使四邊形EFGH是正方形,對(duì)角線AC、BD應(yīng)滿足的條件是
AC=BD且AC⊥BD
AC=BD且AC⊥BD
分析:添加的條件應(yīng)為:AC=BD且AC⊥BD,把AC=BD作為已知條件,根據(jù)三角形的中位線定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根據(jù)等量代換和平行于同一條直線的兩直線平行,得到HG和EF平行且相等,所以EFGH為平行四邊形,又EH等于BD的一半且AC=BD,所以得到所證四邊形的鄰邊EH與HG相等,所以四邊形EFGH為菱形,進(jìn)而利用對(duì)角線垂直得出菱形EFGH是正方形.
解答:解:添加的條件應(yīng)為:AC=BD且AC⊥BD.
理由:∵E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點(diǎn),
∴在△ADC中,HG為△ADC的中位線,所以HG∥AC且HG=
1
2
AC;同理EF∥AC且EF=
1
2
AC,同理可得EH=
1
2
BD,
則HG∥EF且HG=EF,
∴四邊形EFGH為平行四邊形,又AC=BD,所以EF=EH,
∴四邊形EFGH為菱形,
∵AC⊥BD,EF∥AC,
∴EF⊥BD,
∵EH∥BD,
∴EF⊥EH,
∴∠FEH=90°,
∴菱形EFGH是正方形.
故答案為:AC=BD且AC⊥BD.
點(diǎn)評(píng):此題考查了正方形的判定以及三角形中位線的性質(zhì),靈活運(yùn)用三角形的中位線定理以及平行線的性質(zhì)得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案