如圖,A,B,C為反比例函數(shù)圖象上的三個點,分別從A,B,C向xy軸作垂線,構(gòu)成三個矩形,它們的面積分別是S1,S2,S3,則S1,S2,S3的大小關(guān)系是( )

A.S1=S2>S3
B.S1<S2<S3
C.S1>S2>S3
D.S1=S2=S3
【答案】分析:過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積S是個定值,即S=|k|.
解答:解:設(shè)點A坐標為(x1,y1) 點B坐標(x2,y2) 點C坐標(x3,y3),
∵S1=x1•y1=k,S2=x2•y2=k,S3=x3•y3=k,
∴S1=S2=S3
故選D.
點評:主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)常考查的一個知識點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知P為正方形ABCD的對角線AC上一點(不與A、C重合),PE⊥BC于點E,PF⊥CD于點F.
(1)試說明:BP=DP;
(2)如圖2,若正方形PECF繞點C按逆時針方向旋轉(zhuǎn),在旋轉(zhuǎn)過程中是否總有BP=DP?若是,請給予證明;若不是,請畫圖用反例加以說明;
(3)試選取正方形ABCD的兩個頂點,分別與正方形PECF的兩個頂點連接,使得到的兩條線段在正方形PECF繞點C按逆時針方向旋轉(zhuǎn)的過程中長度始終相等,并證明你的結(jié)論;
(4)旋轉(zhuǎn)的過程中AP和DF的長度是否相等?若不等,直接寫出AP:DF=
 

(5)若正方形ABCD的邊長是4,正方形PECF的邊長是1.把正方形PECF繞點C按逆時針方向旋轉(zhuǎn)精英家教網(wǎng)的過程中,△PBD的面積是否存在最大值、最小值?如果存在,試求出最大值、最小值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮同學(xué)為了鞏固自己對平行四邊形判定知識的掌握情況,設(shè)計了一個游戲,他將四邊形ABCD中的部分條件分別寫在四張大小、質(zhì)地及背面顏色都相同的卡片上,卡片如圖:
他將卡片正面朝下反扣在桌面上,洗勻后從中隨機抽取兩張,然后根據(jù)卡片上的兩個條件判斷四邊形ABCD是否為平行四邊形,請你用列舉法(列表法或樹狀圖法)求出他能夠判定四邊形ABCD為平行四邊形的概率.(卡片可用a、b、c、d表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是2007年11月份的日歷牌,我們在日歷牌中用兩種不同的方式選擇四個數(shù).

(1)從甲中選擇構(gòu)成的“矩形”中發(fā)現(xiàn):11×5-12×4=7,即對角線上兩數(shù)積的差為7.請你平移矩形甲,使它的四個頂點落在其他的四個數(shù)上,對角線上的兩數(shù)積的差還為7嗎?
(2)對乙中選擇構(gòu)成的“平行四邊形”頂點處的四個數(shù)字,按上述方法計算和平移,你又能得出什么結(jié)論?
(3)由第(1)(2)小題得出的這些規(guī)律是否具有一般性?如果你認為不具有一般性,請舉反例:如果你認為具有一般性,請假設(shè)所選擇的某個數(shù)為n,然后通過含n的代數(shù)式的運算加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年陜西省西安市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

小亮同學(xué)為了鞏固自己對平行四邊形判定知識的掌握情況,設(shè)計了一個游戲,他將四邊形ABCD中的部分條件分別寫在四張大小、質(zhì)地及背面顏色都相同的卡片上,卡片如圖:
他將卡片正面朝下反扣在桌面上,洗勻后從中隨機抽取兩張,然后根據(jù)卡片上的兩個條件判斷四邊形ABCD是否為平行四邊形,請你用列舉法(列表法或樹狀圖法)求出他能夠判定四邊形ABCD為平行四邊形的概率.(卡片可用a、b、c、d表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年4月份中考數(shù)學(xué)模擬試卷(十一)(解析版) 題型:解答題

小亮同學(xué)為了鞏固自己對平行四邊形判定知識的掌握情況,設(shè)計了一個游戲,他將四邊形ABCD中的部分條件分別寫在四張大小、質(zhì)地及背面顏色都相同的卡片上,卡片如圖:
他將卡片正面朝下反扣在桌面上,洗勻后從中隨機抽取兩張,然后根據(jù)卡片上的兩個條件判斷四邊形ABCD是否為平行四邊形,請你用列舉法(列表法或樹狀圖法)求出他能夠判定四邊形ABCD為平行四邊形的概率.(卡片可用a、b、c、d表示)

查看答案和解析>>

同步練習冊答案