在△ABC中,∠C=90°,D是AC邊上的點(diǎn),∠A=∠DBC,將線段BD繞點(diǎn)B旋轉(zhuǎn),使點(diǎn)D落在線段AC的延長線上,記作點(diǎn)E.如果BC=4,AD=6,那么DE=________.

4
分析:由∠A=∠DBC,∠DCB=∠BCA可判斷△DCB∽△BCA,利用相似比可計(jì)算出CD=2,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到BE=BD,由∠ACB=90°,根據(jù)等腰三角形的性質(zhì)得到
CD=CE,所以DE=2CD=4.
解答:如圖,
∵∠A=∠DBC,
而∠DCB=∠BCA,
∴△DCB∽△BCA,
∴CD:BC=BC:AC,
而AD=6,BC=4,
∴CD:4=4:(CD+6),
∴CD=2,
∵線段BD繞點(diǎn)B旋轉(zhuǎn)得到線段BE,
∴BE=BD,
∵∠ACB=90°,
∴CD=CE,
∴DE=2CD=4.
故答案為4.
點(diǎn)評:本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了三角形相似的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點(diǎn)O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點(diǎn)F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點(diǎn)D,交AC于點(diǎn)E、已知△ABC中與△ABD的周長分別為18cm和12cm,則線段AE的長等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長為( 。
A、
2
B、
3
C、2
D、以上都不對

查看答案和解析>>

同步練習(xí)冊答案