(2009•西寧)已知:如圖,AB為⊙O的直徑,AB=AC,⊙O交BC于D,DE⊥AC于E.
(1)請判斷DE與⊙O的位置關系,并證明;
(2)連接AD,若⊙O的半徑為,AD=3,求DE的長.

【答案】分析:(1)要判斷DE是⊙O的切線,只要證明DE垂直于過切點的半徑,即DE⊥OD即可;
(2)有Rt△ADC中根據(jù)勾股定理求出DC,根據(jù)△ACD∽△DCE,對應邊的比相等,就可以求出DE.
解答:(1)解:DE與⊙O相切,
證明:連接AD、OD,
∵AB為⊙O的直徑,
∴∠BDA=90°,
∴AD⊥BC.
又∵AB=AC,
∴BD=DC,
又∵OB=OA,
∴OD是△ABC的中位線,
∴OD∥AC.
又∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切線.

(2)解:若⊙O的半徑為,則AB=AC=5,
在Rt△ADC中,AD=3,AC=5,
∴DC=,
又∵AC•DE=AD•DC,
∴DE=
點評:本題考查了切線的判定.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•西寧)已知OABC是一張矩形紙片,AB=6.
(1)如圖1,在AB上取一點M,使得△CBM與△CB′M關于CM所在直線對稱,點B′恰好在邊OA上,且△OB′C的面積為24cm2,求BC的長;
(2)如圖2.以O為原點,OA、OC所在直線分別為x軸、y軸建立平面直角坐標系.求對稱軸CM所在直線的函數(shù)關系式;
(3)作B′G∥AB交CM于點G,若拋物線y=x2+m過點G,求這條拋物線所對應的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省梅州市數(shù)學總復習測試卷(15) 綜合五(解析版) 題型:解答題

(2009•西寧)已知OABC是一張矩形紙片,AB=6.
(1)如圖1,在AB上取一點M,使得△CBM與△CB′M關于CM所在直線對稱,點B′恰好在邊OA上,且△OB′C的面積為24cm2,求BC的長;
(2)如圖2.以O為原點,OA、OC所在直線分別為x軸、y軸建立平面直角坐標系.求對稱軸CM所在直線的函數(shù)關系式;
(3)作B′G∥AB交CM于點G,若拋物線y=x2+m過點G,求這條拋物線所對應的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省河源市數(shù)學總復習測試卷(15) 綜合五(解析版) 題型:解答題

(2009•西寧)已知OABC是一張矩形紙片,AB=6.
(1)如圖1,在AB上取一點M,使得△CBM與△CB′M關于CM所在直線對稱,點B′恰好在邊OA上,且△OB′C的面積為24cm2,求BC的長;
(2)如圖2.以O為原點,OA、OC所在直線分別為x軸、y軸建立平面直角坐標系.求對稱軸CM所在直線的函數(shù)關系式;
(3)作B′G∥AB交CM于點G,若拋物線y=x2+m過點G,求這條拋物線所對應的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年青海省西寧市中考數(shù)學試卷(解析版) 題型:解答題

(2009•西寧)已知OABC是一張矩形紙片,AB=6.
(1)如圖1,在AB上取一點M,使得△CBM與△CB′M關于CM所在直線對稱,點B′恰好在邊OA上,且△OB′C的面積為24cm2,求BC的長;
(2)如圖2.以O為原點,OA、OC所在直線分別為x軸、y軸建立平面直角坐標系.求對稱軸CM所在直線的函數(shù)關系式;
(3)作B′G∥AB交CM于點G,若拋物線y=x2+m過點G,求這條拋物線所對應的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年山西省太原市中考數(shù)學試卷(解析版) 題型:填空題

(2009•西寧)已知圓錐的底面半徑為2cm,母線長是4cm,則圓錐的側面積是    cm2(結果保留π).

查看答案和解析>>

同步練習冊答案