精英家教網 > 初中數學 > 題目詳情

如圖,AB是⊙O的直徑,點P在AB的延長線上,PM切⊙O于點M.若OA=a,PM=數學公式a,PB=2-a,則△PMB的周長等于________.

2+
分析:連接OM,由PM為圓的切線,利用切線的性質得到PM垂直于OM,在直角三角形OPM中,利用勾股定理列出關于a的方程,求出方程的解得到a的值,確定出MB為斜邊上的中線,利用斜邊上的中線等于斜邊的一半求出MB的長,即可確定出三角形PMB的周長.
解答:解:連接OM,
∵PM為圓O的切線,
∴OM⊥PM,即∠PMO=90°,
在Rt△OPM中,OP=OB+PB=a+2-a=2,OM=OA=a,PM=a,
根據勾股定理得:OP2=MP2+OM2,即4=3a2+a2,
解得:a=1,
∴MP=,BP=OB=1,即MB為斜邊上的中線,
∴MB=1,
則△PMB的周長為2+
故答案為:2+
點評:此題考查了切線的性質,勾股定理,直角三角形斜邊上的中線性質,熟練掌握切線的性質是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側面的一部分(如圖1),它的側面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據所標示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網0.1平方米)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數學 來源:初中數學解題思路與方法 題型:047

已知如圖,AB是半圓直經,△ACD內接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數學 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習冊答案