【題目】某公司生產(chǎn)一種飲料是由A,B兩種原料液按一定比例配制而成,其中A原料液的成本價(jià)為15元/千克,B原料液的成本價(jià)為10元/千克,按現(xiàn)行價(jià)格銷售每千克獲得70%的利潤(rùn)率.由于市場(chǎng)競(jìng)爭(zhēng),物價(jià)上漲,A原料液上漲20%,B原料液上漲10%,配制后的總成本增加了12%,公司為了拓展市場(chǎng),打算再投入現(xiàn)總成本的25%做廣告宣傳,如果要保證每千克利潤(rùn)不變,則此時(shí)這種飲料的利潤(rùn)率是
【答案】50%.
【解析】
原料液A的成本價(jià)為15元/千克,原料液B的成本價(jià)為10元/千克,
漲價(jià)后,原A價(jià)格上漲20%,變?yōu)?/span>18元;B上漲10%,變?yōu)?/span>11元,總成本上漲12%,
設(shè)每100千克成品中,二原料比例A占x千克,B占(100-x)千克,
則漲價(jià)前每100千克成本為15x+10(100-x),
漲價(jià)后每100千克成本為18x+11(100-x),
18x+11(100-x)=[15x+10(100-x)]?(1+12%),
18x+11(100-x)=1.12[15x+10(100-x)],
7x+1100=5.6x+1120,
1.4x=20,
解得:x=千克,
100-x=千克,
即二者的比例是:A:B=1:6,
則漲價(jià)前每千克的成本為元,銷售價(jià)為元,
利潤(rùn)為7.5元,
原料漲價(jià)后,每千克成本變?yōu)?/span>12元,成本的25%=3元,保證利潤(rùn)為7.5元,
則利潤(rùn)率為:7.5÷(12+3)=50%.
故答案為:50%.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx﹣4k+4與拋物線y=x2﹣x交于A、B兩點(diǎn).
(1)直線總經(jīng)過定點(diǎn),請(qǐng)直接寫出該定點(diǎn)的坐標(biāo);
(2)點(diǎn)P在拋物線上,當(dāng)k=﹣時(shí),解決下列問題:
①在直線AB下方的拋物線上求點(diǎn)P,使得△PAB的面積等于20;
②連接OA,OB,OP,作PC⊥x軸于點(diǎn)C,若△POC和△ABO相似,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測(cè)試的成績(jī).測(cè)試規(guī)則為連續(xù)接球10個(gè),每墊球到位1個(gè)記1分.運(yùn)動(dòng)員甲測(cè)試成績(jī)表
測(cè)試序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(jī)(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)寫出運(yùn)動(dòng)員甲測(cè)試成績(jī)的眾數(shù)和中位數(shù);
(2)在他們?nèi)酥羞x擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?為什么?(參考數(shù)據(jù):三人成績(jī)的方差分別為S甲2=0.8、S乙2=0.4、S丙2=0.8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE、BE分別交于點(diǎn)G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD=AE2;④∠DFE=2∠DAC ;⑤若連接CH,則CH∥EF.其中正確的個(gè)數(shù)為( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“歐幾里得算法”是有記載的最古老的算法,可追溯至公元前300年前.如圖的程序框圖的算法思路就是來源于“歐幾里得得法”.執(zhí)行該程序框圖(圖中aMODb表示a除以b的余數(shù),a=b表示將b的值賦與a)若輸入的a,b分別為675,125,則輸出的( )
A. 0B. 25C. 50D. 75
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知ABCD中,以AB為斜邊在ABCD內(nèi)作等腰直角△ABE,且AE=AD,連接DE,過E作EF⊥DE交AB于F交DC于G,且∠AEF=15°
(1)若EF=,求AB的長(zhǎng).
(2)求證:2GE+EF=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對(duì)不同口味的牛奶的喜好,對(duì)全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖的信息解決下列問題:
(1)本次調(diào)查的學(xué)生有多少人?
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中C對(duì)應(yīng)的中心角度數(shù)是_____;
(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(m,4),B(n,1)在反比例函數(shù)圖象上,AD⊥x軸于點(diǎn)D,BC⊥x軸于點(diǎn)C,DC=3,在x軸上存在一點(diǎn)P,使|PA﹣PB|的值最大,則P點(diǎn)的坐標(biāo)是( )
A. (5,0)B. (4.0)C. (3,0)D. (2,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O外接于△ABC,點(diǎn)D在BC的延長(zhǎng)線上,∠ABC的角平分線與AD交于E點(diǎn),與AC交于F點(diǎn),且AE=AF.
(1)證明直線AD是⊙O的切線;
(2)若AD=16,sinD=,求BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com