如圖,邊長(zhǎng)為1的正方形OABC的頂點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)D在線段BC上移動(dòng)(不與B,C重合),連接OD,過(guò)點(diǎn)D作DE⊥OD,交邊AB于點(diǎn)E,連接OE.記CD的長(zhǎng)為t.
(1)當(dāng)t=數(shù)學(xué)公式時(shí),求直線DE的函數(shù)表達(dá)式;
(2)如果記梯形COEB的面積為S,那么是否存在S的最大值?若存在,請(qǐng)求出這個(gè)最大值及此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)OD2+DE2的算術(shù)平方根取最小值時(shí),求點(diǎn)E的坐標(biāo).

解:(1)∵∠ODC+∠EDB=∠ODC+∠COD=90°,
∴∠DOC=∠EDB,
同理得∠ODC=∠DEB,
∵∠OCD=∠B=90°,
∴△CDO∽△BED,
,即,
得BE=,則點(diǎn)E的坐標(biāo)為E(1,),
設(shè)直線DE的一次函數(shù)表達(dá)式為y=kx+b,直線經(jīng)過(guò)兩點(diǎn)D(,1)和E(1,),
代入y=kx+b得,
故所求直線DE的函數(shù)表達(dá)式為y=;

(2)存在S的最大值.
∵△COD∽△BDE,
,即,BE=t-t2
×1×(1+t-t2)=
故當(dāng)t=時(shí),S有最大值;

(3)在Rt△OED中,OD2+DE2=OE2,OD2+DE2的算術(shù)平方根取最小值,也就是斜邊OE取最小值.
當(dāng)斜邊OE取最小值且一直角邊OA為定值時(shí),另一直角邊AE達(dá)到最小值,
于是△OEA的面積達(dá)到最小值,
此時(shí),梯形COEB的面積達(dá)到最大值.
由(2)知,當(dāng)t=時(shí),梯形COEB的面積達(dá)到最大值,故所求點(diǎn)E的坐標(biāo)是(1,).
分析:(1)因?yàn)椤螼DC+∠EDB=∠ODC+∠COD=90°,可得出∠DOC=∠EDB,同理得∠ODC=∠DEB,又因?yàn)椤螼CD=∠B=90°,因此△CDO∽△BED,那么可得出關(guān)于OC,CD,BD,BE比例關(guān)系的式子,有CD的長(zhǎng),有OC,BC的長(zhǎng),那么可得出BE的長(zhǎng),因此就能求出E的坐標(biāo),然后根據(jù)待定系數(shù)法求出過(guò)DE的函數(shù)的關(guān)系式;
(2)要求梯形COEB的面積就必須知道BE的長(zhǎng),同(1)的方法,我們可以用t表示出BE,那么就能用關(guān)于t的式子表示出S,然后根據(jù)函數(shù)的性質(zhì)來(lái)判斷S的最大值及相應(yīng)的t的值.
(3)當(dāng)OD2+DE2的算術(shù)平方根取最小值時(shí)OE就最小,OA為定值,因此此時(shí)AE最小,那么三角形AOE的面積就最小,此時(shí)梯形OEBC的面積最大,那么也就是說(shuō)OE最小時(shí)梯形OEBC的面積最大,根據(jù)(2)我們知道梯形最大時(shí)t的值,由此可得出E的坐標(biāo).
點(diǎn)評(píng):本題考查了正方形的性質(zhì),一次函數(shù)的綜合應(yīng)用以及相似三角形的性質(zhì)等知識(shí)點(diǎn).本題中用相似三角形得出比例關(guān)系,然后用線段的比例關(guān)系和CD表示出BE是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,邊長(zhǎng)為
π2
的正△ABC,點(diǎn)A與原點(diǎn)O重合,若將該正三角形沿?cái)?shù)軸正方向翻滾一周,點(diǎn)A恰好與數(shù)軸上的點(diǎn)A′重合,則點(diǎn)A′對(duì)應(yīng)的實(shí)數(shù)是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,邊長(zhǎng)為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請(qǐng)說(shuō)明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,邊長(zhǎng)為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請(qǐng)說(shuō)明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖將邊長(zhǎng)為1的正方形OAPB沿軸正方向連續(xù)翻轉(zhuǎn)2006次,點(diǎn)P依次落在點(diǎn),,,……的位置,則的橫坐標(biāo)=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年新人教版九年級(jí)(上)期中數(shù)學(xué)試卷(7)(解析版) 題型:解答題

如圖,邊長(zhǎng)為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請(qǐng)說(shuō)明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案