如圖,⊙O是△ABC內(nèi)切圓,切點(diǎn)為D、E、F,∠A=90°,∠C=30°,則∠DFE度數(shù)是________度.

60
分析:根據(jù)三角形的內(nèi)角和定理求得∠B=60°.根據(jù)切線的性質(zhì)定理和四邊形的內(nèi)角和定理求得∠DOE=120°,再根據(jù)圓周角定理求得∠DFE=60°.
解答:∵∠A=90°,∠C=30°,
∴∠B=60°,
∴∠DOE=360°-90°-90°-60°=120°,
∴∠DFE=60°.
點(diǎn)評(píng):此題綜合運(yùn)用了切線的性質(zhì)定理、三角形的內(nèi)角和定理、四邊形的內(nèi)角和定理以及圓周角定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,OD⊥AB于點(diǎn)D、交⊙O于點(diǎn)E,∠C=60°,如果⊙O的半徑為2,那么OD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,AD是△ABC的高,且AD平分∠BAC,請(qǐng)指出∠B與∠C的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•雅安)如圖,DE是△ABC的中位線,延長(zhǎng)DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黔東南州)如圖,⊙O是△ABC的外接圓,圓心O在AB上,過(guò)點(diǎn)B作⊙O的切線交AC的延長(zhǎng)線于點(diǎn)D.
(1)求證:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,BD是∠ABC的平分線,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案