(2012•青島)問題提出:以n邊形的n個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+n)個點(diǎn)作為頂點(diǎn),可把原n邊形分割成多少個互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊性的策略,先從簡單和具體的情形入手:
探究一:以△ABC的三個頂點(diǎn)和它內(nèi)部的1個點(diǎn)P,共4個點(diǎn)為頂點(diǎn),可把△ABC分割成多少個互不重疊的小三角形?
如圖①,顯然,此時可把△ABC分割成3個互不重疊的小三角形.
探究二:以△ABC的三個頂點(diǎn)和它內(nèi)部的2個點(diǎn)P、Q,共5個點(diǎn)為頂點(diǎn),可把△ABC分割成多少個互不重疊的小三角形?
在探究一的基礎(chǔ)上,我們可看作在圖①△ABC的內(nèi)部,再添加1個點(diǎn)Q,那么點(diǎn)Q的位置會有兩種情況:
一種情況,點(diǎn)Q在圖①分割成的某個小三角形內(nèi)部.不妨假設(shè)點(diǎn)Q在△PAC內(nèi)部,如圖②;
另一種情況,點(diǎn)Q在圖①分割成的小三角形的某條公共邊上.不妨假設(shè)點(diǎn)Q在PA上,如圖③.
顯然,不管哪種情況,都可把△ABC分割成5個不重疊的小三角形.
探究三:以△ABC的三個頂點(diǎn)和它內(nèi)部的3個點(diǎn)P、Q、R,共6個點(diǎn)為頂點(diǎn)可把△ABC分割成
7
7
個互不重疊的小三角形,并在圖④中畫出一種分割示意圖.
探究四:以△ABC的三個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+3)個頂點(diǎn)可把△ABC分割成
(2m+1)
(2m+1)
個互不重疊的小三角形.
探究拓展:以四邊形的4個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+4)個頂點(diǎn)可把四邊形分割成
(2m+2)
(2m+2)
個互不重疊的小三角形.
問題解決:以n邊形的n個頂點(diǎn)和它內(nèi)部的m個點(diǎn),共(m+n)個頂點(diǎn)可把△ABC分割成
(2m+n-2)
(2m+n-2)
個互不重疊的小三角形.
實(shí)際應(yīng)用:以八邊形的8個頂點(diǎn)和它內(nèi)部的2012個點(diǎn),共2020個頂點(diǎn),可把八邊形分割成多少個互不重疊的小三角形?(要求列式計算)