如圖表示邊長為a的正方形紙片剪去一個邊長為b的小正方形后余下的紙片.若把余下的紙片剪開后拼成一個四邊形,可以用來驗(yàn)證公式a2-b2=(a+b)(a-b).
(1)請你通過對圖形的剪拼,畫出三種不同拼法的示意圖.要求:
①拼成的圖形是四邊形;
②在圖形上畫剪切線(用虛線表示);
③在拼出的圖形上標(biāo)出已知的邊長.
(2)選擇其中一種拼法寫出驗(yàn)證上述公式的過程.
作業(yè)寶

解:(1)如圖:






(2)在圖①中,大正方形面積為a2,小正方形面積為b2,所以陰影部分的面積為a2-b2,
在圖2中,陰影部分為一長方形,長為a+b,寬為a-b,則面積為(a+b)(a-b),
由于兩個陰影部分面積相等,所以有a2-b2=(a+b)(a-b)成立.
分析:(1)拼成長方形由兩種,拼成等腰梯形一種;
(2)分別表示出兩種情況下的面積,而面積是相等的,故可得到結(jié)果.
點(diǎn)評:本題考查了平方差公式幾何意義的理解,將整式運(yùn)算與幾何圖形結(jié)合,注意各個量的變化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長為5的正方形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AG交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),試證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)(t>0),結(jié)論CE=EP是否成立,請說明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長為4的等邊三角形AOB的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)A在x軸正半軸上,點(diǎn)B在第一象限.一動點(diǎn)P沿x軸以每秒1個單位長的速度向點(diǎn)A勻速運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動,設(shè)點(diǎn)P運(yùn)動的時(shí)間是t秒.將線段BP的中點(diǎn)繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)60°得點(diǎn)C,點(diǎn)C隨點(diǎn)P的運(yùn)動而運(yùn)動,連接CP、CA,過點(diǎn)P作PD⊥OB于點(diǎn)D.
(1)填空:PD的長為
3
2
t
3
2
t
用含t的代數(shù)式表示);
(2)求點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);
(3)在點(diǎn)P從O向A運(yùn)動的過程中,△PCA能否成為直角三角形?若能,求t的值.若不能,請說明理由;
(4)填空:在點(diǎn)P從O向A運(yùn)動的過程中,點(diǎn)C運(yùn)動路線的長為
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•義烏市模擬)如圖,邊長為4的等邊△AOB的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)A在x軸正半軸上,點(diǎn)B在第一象限.一動點(diǎn)P沿x軸以每秒1個單位長度的速度由點(diǎn)O向點(diǎn)A勻速運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動,設(shè)點(diǎn)P運(yùn)動的時(shí)間是t秒.在點(diǎn)P的運(yùn)動過程中,線段BP的中點(diǎn)為點(diǎn)E,將線段PE繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)60°得PC. 
(1)當(dāng)點(diǎn)P運(yùn)動到線段OA的中點(diǎn)時(shí),點(diǎn)C的坐標(biāo)為
7
2
,
3
2
7
2
,
3
2

(2)在點(diǎn)P從點(diǎn)O到點(diǎn)A的運(yùn)動過程中,用含t的代數(shù)式表示點(diǎn)C的坐標(biāo);
(3)在點(diǎn)P從點(diǎn)O到點(diǎn)A的運(yùn)動過程中,求出點(diǎn)C所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省翠苑中學(xué)九年級下學(xué)期3月考數(shù)學(xué)卷(帶解析) 題型:解答題

  如圖,邊長為4的等邊三角形AOB的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)A在x軸正半軸上,點(diǎn)B在第一象限.一動點(diǎn)P沿x軸以每秒1個單位長的速度向點(diǎn)A勻速運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動,設(shè)點(diǎn)P運(yùn)動的時(shí)間是t秒.將線段BP的中點(diǎn)繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)60°得點(diǎn)C,點(diǎn)C隨點(diǎn)P的運(yùn)動而運(yùn)動,連接CP、CA,過點(diǎn)P作PD⊥OB于點(diǎn)D.

(1)填空:PD的長為               (用含t的代數(shù)式表示);
(2)求點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);
(3)在點(diǎn)P從O向A運(yùn)動的過程中,△PCA能否成為直角三角形?若能,求t的值.若不能,請說明理由;
(4)填空:在點(diǎn)P從O向A運(yùn)動的過程中,點(diǎn)C運(yùn)動路線的長為                            

查看答案和解析>>

同步練習(xí)冊答案