等邊三角形繞著它的三邊中線的交點(diǎn)旋轉(zhuǎn)至少________度,能夠與本身重合.

120
分析:等邊三角形的三邊中線的交點(diǎn)就是等邊三角形的中心,等邊三角形可以被經(jīng)過(guò)中心的射線平分成3個(gè)全等的部分,則旋轉(zhuǎn)至少120度,能夠與本身重合.
解答:等邊三角形可以被經(jīng)過(guò)中心的射線平分成3個(gè)全等的部分,則旋轉(zhuǎn)至少360÷3=120度.
點(diǎn)評(píng):等邊三角形是旋轉(zhuǎn)對(duì)稱圖形,確定旋轉(zhuǎn)角的方法是需要重點(diǎn)掌握的內(nèi)容.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是邊長(zhǎng)為a的等邊三角形,O為△ABC的中心.將△ABC繞著中心O旋轉(zhuǎn)120°.
①直接寫出△ABC的內(nèi)切圓半徑r和外接圓半徑R分別是多少?
②設(shè)點(diǎn)D、E、F分別在邊AB、BC、CA上,且AD=2DB,BE=2EC,CF=2FA,試畫出△DEF,說(shuō)明它的形狀,并計(jì)算它的周長(zhǎng);
③根據(jù)“線動(dòng)成面”的道理,△ABC的三條邊AB、BC和CA在旋轉(zhuǎn)過(guò)程中掃過(guò)的部分組成的平面圖形的形狀是什么?并計(jì)算出此圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)三角形是等邊三角形.它繞著某一點(diǎn)旋轉(zhuǎn)120°后能與原來(lái)的圖形重合,那么這一點(diǎn)是
三條高線、中線、角平分線的交點(diǎn)
三條高線、中線、角平分線的交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,△ABC是邊長(zhǎng)為a的等邊三角形,O為△ABC的中心.將△ABC繞著中心O旋轉(zhuǎn)120°.
①直接寫出△ABC的內(nèi)切圓半徑r和外接圓半徑R分別是多少?
②設(shè)點(diǎn)D、E、F分別在邊AB、BC、CA上,且AD=2DB,BE=2EC,CF=2FA,試畫出△DEF,說(shuō)明它的形狀,并計(jì)算它的周長(zhǎng);
③根據(jù)“線動(dòng)成面”的道理,△ABC的三條邊AB、BC和CA在旋轉(zhuǎn)過(guò)程中掃過(guò)的部分組成的平面圖形的形狀是什么?并計(jì)算出此圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年天津市河?xùn)|區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,△ABC是邊長(zhǎng)為a的等邊三角形,O為△ABC的中心.將△ABC繞著中心O旋轉(zhuǎn)120°.
①直接寫出△ABC的內(nèi)切圓半徑r和外接圓半徑R分別是多少?
②設(shè)點(diǎn)D、E、F分別在邊AB、BC、CA上,且AD=2DB,BE=2EC,CF=2FA,試畫出△DEF,說(shuō)明它的形狀,并計(jì)算它的周長(zhǎng);
③根據(jù)“線動(dòng)成面”的道理,△ABC的三條邊AB、BC和CA在旋轉(zhuǎn)過(guò)程中掃過(guò)的部分組成的平面圖形的形狀是什么?并計(jì)算出此圖形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案