如圖所示,在Rt△ABC中,∠C=90°,AC=3,AB=5.點P從點C出發(fā)沿CA以每秒1個單位長的速度向點A勻速運動,到達(dá)點A后立刻以原來的速度沿AC返回;點Q從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動.伴隨著P、Q的運動,DE保持垂直平分PQ,且交PQ于點D,交折線QB-BC-CP于點E.點P、Q同時出發(fā),當(dāng)點Q到達(dá)點B時停止運動,點P也隨之停止.設(shè)點P、Q運動的時間是t秒(t>0).
(1)在點P從C向A運動的過程中,求△APQ的面積S與t的函數(shù)關(guān)系式;(不必寫出t的取值范圍)
(2)在點E從B向C運動的過程中,四邊形QBED能否成為直角梯形?若能,求t的值;若不能,請說明理由.

【答案】分析:(1)作QF⊥AC于點F,先求BC,再用t表示QF,然后得出S的函數(shù)解析式;
(2)當(dāng)DE∥QB時,得四邊形QBED是直角梯形,由△APQ∽△ABC,由線段的對應(yīng)比例關(guān)系求得t,由PQ∥BC,四邊形QBED是直角梯形,△AQP∽△ABC,由線段的對應(yīng)比例關(guān)系求t.
解答:解:(1)作QF⊥AC于點F,如圖1,AQ=CP=t,
∴AP=3-t.
由△AQF∽△ABC,BC==4,


∴在點P從C向A運動的過程中,△APQ的面積S=(3-t)•;
(2)能.
①當(dāng)由△APQ∽△ABC,DE∥QB時,如圖2.
∵DE⊥PQ,
∴PQ⊥QB,四邊形QBED是直角梯形,
此時∠AQP=90°.
由△APQ∽△ABC,得 ,
.解得
②如圖3,當(dāng)PQ∥BC時,DE⊥BC,四邊形QBED是直角梯形.
此時∠APQ=90°.
由△AQP∽△ABC,得 ,

解得
點評:本題考查了相似三角形的判定定理,線段比的有關(guān)知識,利用二次函數(shù)的相關(guān)知識以及實際應(yīng)用相結(jié)合,同時考生要注意巧妙利用輔助線的幫助解答,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于點D,且AB=4,BD=5,則點D到BC的距離是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=55°,則∠DCB=
55
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖所示,在Rt△ABC中,∠C=90°,∠A=30°.作AB的中垂線l分別交AB、AC及BC的延長線于點D、E、F,連接BE. 求證:EF=2DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C為圓心,R為半徑所得的圓與斜邊AB只有一個公共點,則R的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在Rt△ABC中,AD平分∠BAC,交BC于D,CH⊥AB于H,交AD于F,DE⊥AB垂足為E,求證:四邊形CFED是菱形.

查看答案和解析>>

同步練習(xí)冊答案