【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式變得更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了你最喜歡的溝通方式調(diào)查問(wèn)卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息回答下列問(wèn)題:

1)本次調(diào)查共調(diào)查了______名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為______;

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)該校共有1500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用微信溝通的學(xué)生有多少名?

4)某天甲、乙兩名同學(xué)都想從微信、“QQ”電話三種溝通方式中選一種方式與對(duì)方聯(lián)系,請(qǐng)用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.

【答案】1100108°;(2)補(bǔ)充圖形見(jiàn)解析;(3600人;(4

【解析】

1)根據(jù)喜歡電話溝通的人數(shù)與百分比即可求出共抽查人數(shù),求出使用QQ的百分比即可求出QQ的扇形圓心角度數(shù);

2)計(jì)算出短信與微信的人數(shù)即可補(bǔ)全統(tǒng)計(jì)圖;

3)用樣本中喜歡用微信進(jìn)行溝通的百分比來(lái)估計(jì)1500名學(xué)生中喜歡用微信進(jìn)行溝通的人數(shù)即可求出答案;

4)用列表法分別求出所有情況以及甲、乙兩名同學(xué)恰好選中同一種溝通方式的情況后,利用概念公式即可求出甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率.

1)設(shè)本次調(diào)查共調(diào)查了名學(xué)生,其中最喜歡電話溝通方式人數(shù)占比=,解得; “QQ”的扇形圓心角的度數(shù)=;

2)喜歡用短信的人數(shù)為:人,

喜歡用微信的人數(shù)為:,

補(bǔ)充圖形,如圖所示:

3

4)有題意,可列表:

2

1

A

B

C

A

B

C

所有情況共有9種情況,其中兩人恰好選中同一種溝通方式共有3種情況,

甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小澤和小帥兩同學(xué)分別從甲地出發(fā),騎自行車沿同一條路到乙地參加社會(huì)實(shí)踐活動(dòng).如圖折線OAB和線段CD分別表示小澤和小帥離甲地的距離y(單位:千米)與時(shí)間x(單位:小時(shí))之間函數(shù)關(guān)系的圖象.根據(jù)圖中提供的信息,解答下列問(wèn)題:

1)小帥的騎車速度為 千米/小時(shí);點(diǎn)C的坐標(biāo)為 ;

2)求線段AB對(duì)應(yīng)的函數(shù)表達(dá)式;

3)當(dāng)小帥到達(dá)乙地時(shí),小澤距乙地還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車從地出發(fā),沿同一路線駛向地.甲車先出發(fā)勻速駛向地,后乙出發(fā),勻速行駛一段時(shí)間后,在途中的貨站裝貨耗時(shí)半小時(shí).由于滿載貨物,為了行駛安全,速度減少了,結(jié)果與甲車同時(shí)到達(dá)地,甲乙兩車距地的路程與乙車行駛時(shí)間之間的函數(shù)圖象如圖所示

1的值是________,甲的速度是________

2)求乙車距地的路程之間的函數(shù)關(guān)系式;

3)若甲乙兩車距離不超過(guò)時(shí),車載通話機(jī)可以進(jìn)行通話,則兩車在行駛過(guò)程中可以通話的總時(shí)長(zhǎng)為多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,.點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度向終點(diǎn)運(yùn)動(dòng),過(guò)點(diǎn)邊或邊于點(diǎn),點(diǎn)是射線邊上一點(diǎn),總保持,以、為鄰邊構(gòu)造矩形,設(shè)矩形重疊部分圖形的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為

1)用含的式子表示線段的長(zhǎng);

2)當(dāng)點(diǎn)落在上時(shí),求的值;

3)當(dāng)矩形重疊部分圖形為四邊形時(shí),求之間的函數(shù)關(guān)系式;

4)點(diǎn)與點(diǎn)同時(shí)出發(fā),在線段上以每秒5個(gè)單位長(zhǎng)度的速度沿往返一次,連結(jié),直接寫出矩形的面積是的面積的2倍時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,為原點(diǎn),點(diǎn)A0),點(diǎn)B0,1),點(diǎn)E是邊AB中點(diǎn),把繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得△ADC,點(diǎn)O,B旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)分別為D,C.記旋轉(zhuǎn)角為

(Ⅰ)如圖①,當(dāng)點(diǎn)D恰好在AB上時(shí),求點(diǎn)D的坐標(biāo);

(Ⅱ)如圖②,若時(shí),求證:四邊形OECD是平行四邊形;

(Ⅲ)連接OC,在旋轉(zhuǎn)的過(guò)程中,求△OEC面積的最大值(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(2,1),點(diǎn)B的坐標(biāo)是(20) .作點(diǎn)B關(guān)于OA的對(duì)稱點(diǎn)B,則點(diǎn)B的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(概念認(rèn)識(shí))

在同一個(gè)圓中兩條互相垂直且相等的弦定義為等垂弦,兩條弦所在直線的交點(diǎn)為等垂弦的分割點(diǎn).如圖①,AB、CD是⊙O的弦,ABCD,ABCD,垂足為E,則AB、CD是等垂弦,E為等垂弦ABCD的分割點(diǎn).

(數(shù)學(xué)理解)

1)如圖②,AB是⊙O的弦,作OCOAODOB,分別交⊙O于點(diǎn)C、D,連接CD.求證: AB、CD是⊙O的等垂弦.

2)在⊙O中,⊙O的半徑為5E為等垂弦AB、CD的分割點(diǎn),.求AB的長(zhǎng)度.

(問(wèn)題解決)

3ABCD是⊙O的兩條弦,CDAB,且CDAB,垂足為F

①在圖③中,利用直尺和圓規(guī)作弦CD(保留作圖痕跡,不寫作法).

②若⊙O的半徑為rABmrm為常數(shù)),垂足F與⊙O的位置關(guān)系隨m的值變化而變化,直接寫出點(diǎn)F與⊙O的位置關(guān)系及對(duì)應(yīng)的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兒童用藥的劑量常常按他們的體重來(lái)計(jì)算,某種藥品,體重的兒童,每次正常服用量為;體重的兒童每次正常服用量為;體重在范圍內(nèi)時(shí),每次正常服用量是兒童體重的一次函數(shù)中,現(xiàn)實(shí)中,該藥品每次實(shí)際服用量可以比每次正常服用略高一些,但不能超過(guò)正常服用量的12倍,否則會(huì)對(duì)兒童的身體造成較大損害.

1)求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

2)若該藥品的一種包裝規(guī)格為/袋,求體重在什么范圍的兒童生病時(shí)可以一次服下一袋藥?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和圖形N,給出如下定義:如果Q為圖形N上一個(gè)動(dòng)點(diǎn),P,Q兩點(diǎn)間距離的最大值為dmaxP,Q兩點(diǎn)間距離的最小值為dmin,我們把dmax + dmin的值叫點(diǎn)P和圖形N間的“和距離”,記作dP,圖形N).

1)如圖,正方形ABCD的中心為點(diǎn)O,A(3,3)

點(diǎn)O到線段AB的“和距離”dO,線段AB= ;

設(shè)該正方形與y軸交于點(diǎn)EF,點(diǎn)P在線段EF上,dP,正方形ABCD=7,求點(diǎn)P的坐標(biāo).

2)如圖2,在(1)的條件下,過(guò)C,D兩點(diǎn)作射線CD,連接AC,點(diǎn)M是射線CD上的一點(diǎn),如果dM,線段AD,直接寫出M點(diǎn)橫坐標(biāo)t取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案