(2012•邵陽)如圖所示,直線AB是⊙O的切線,切點(diǎn)為A,OB=5,AB=4,則OA的長是
3
3
分析:根據(jù)切線的性質(zhì)推知△OAB是直角三角形,然后在直角三角形OAB中由勾股定理來求OA的長度.
解答:解:∵直線AB是⊙O的切線,
∴OA⊥AB,
∴∠OAB=90°.
又OB=5,AB=4,
∴OA=
OB2-AB2
=
52-42
=3.
故答案是:3.
點(diǎn)評(píng):本題考查了切線的性質(zhì)以及勾股定理.解題時(shí)利用了切線的性質(zhì)--圓的切線垂直于經(jīng)過切點(diǎn)的半徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•邵陽)如圖所示,在Rt△ABC中,∠ACB=90°,∠B=30°,ED是BC的垂直平分線,請(qǐng)寫出圖中兩條相等的線段是
BD=CD(答案不唯一)
BD=CD(答案不唯一)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•邵陽)如圖所示,圓柱體的俯視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•邵陽)如圖所示,已知拋物線C0的解析式為y=x2-2x
(1)求拋物線C0的頂點(diǎn)坐標(biāo);
(2)將拋物線C0每次向右平移2個(gè)單位,平移n次,依次得到拋物線C1、C2、C3、…、Cn(n為正整數(shù))
①求拋物線C1與x軸的交點(diǎn)A1、A2的坐標(biāo);
②試確定拋物線Cn的解析式.(直接寫出答案,不需要解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•邵陽)如圖所示,直線y=-
34
x+b
與x軸相交于點(diǎn)A(4,0),與y軸相交于點(diǎn)B,將△AOB沿著y軸折疊,使點(diǎn)A落在x軸上,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)設(shè)點(diǎn)P為線段CA上的一個(gè)動(dòng)點(diǎn),點(diǎn)P與點(diǎn)A、C不重合,連接PB,以點(diǎn)P為端點(diǎn)作射線PM交AB于點(diǎn)M,使∠BPM=∠BAC
①求證:△PBC∽△MPA;
②是否存在點(diǎn)P使△PBM為直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案