(2005•淮安)下列統(tǒng)計(jì)量中,能反映一個(gè)學(xué)生在7~9年級(jí)學(xué)段的學(xué)習(xí)成績(jī)穩(wěn)定程度的是( )
A.平均數(shù)
B.中位數(shù)
C.方差
D.眾數(shù)
【答案】分析:方差反映數(shù)據(jù)的穩(wěn)定性,集中程度,波動(dòng)性;方差越小,數(shù)據(jù)越穩(wěn)定,波動(dòng)性越。纱丝膳袛嗄芊从骋粋(gè)學(xué)生在7~9年級(jí)學(xué)段的學(xué)習(xí)成績(jī)穩(wěn)定程度的量.
解答:解:由于方差反映數(shù)據(jù)的波動(dòng)大小,則能反映學(xué)生的成績(jī)穩(wěn)定程度的是方差.
故選C.
點(diǎn)評(píng):此題主要考查統(tǒng)計(jì)的有關(guān)知識(shí),主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)方差等,各有局限性,因此要對(duì)統(tǒng)計(jì)量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•淮安)課題研究:現(xiàn)有邊長(zhǎng)為120厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計(jì)并制成一個(gè)開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對(duì)水槽的橫截面進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設(shè)AC=x厘米,該水槽的橫截面面積為y厘米2,請(qǐng)你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時(shí),y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請(qǐng)你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大小;
(2)假如你是該興趣小組中的成員,請(qǐng)你再提供兩種方案,使你所設(shè)計(jì)的水槽的橫截面面積更大.畫出你設(shè)計(jì)的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷18(高橋初中 鐘玲芳)(解析版) 題型:解答題

(2005•淮安)課題研究:現(xiàn)有邊長(zhǎng)為120厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計(jì)并制成一個(gè)開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對(duì)水槽的橫截面進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設(shè)AC=x厘米,該水槽的橫截面面積為y厘米2,請(qǐng)你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時(shí),y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請(qǐng)你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大;
(2)假如你是該興趣小組中的成員,請(qǐng)你再提供兩種方案,使你所設(shè)計(jì)的水槽的橫截面面積更大.畫出你設(shè)計(jì)的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年江蘇省淮安市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•淮安)課題研究:現(xiàn)有邊長(zhǎng)為120厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計(jì)并制成一個(gè)開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對(duì)水槽的橫截面進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設(shè)AC=x厘米,該水槽的橫截面面積為y厘米2,請(qǐng)你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時(shí),y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請(qǐng)你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大;
(2)假如你是該興趣小組中的成員,請(qǐng)你再提供兩種方案,使你所設(shè)計(jì)的水槽的橫截面面積更大.畫出你設(shè)計(jì)的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊(cè)答案