(2013•遵義模擬)如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tanC•tanB=( )

A.2
B.3
C.4
D.5
【答案】分析:由DE=2,OE=3可知AO=OD=OE+ED=5,可得AE=8,連接BD、CD,可證∠B=∠ADC,∠C=∠ADB,∠DBA=∠DCA=90°,將tanC,tanB在直角三角形中用線段的比表示,再利用相似轉(zhuǎn)化為已知線段的比.
解答:解:連接BD、CD,由圓周角定理可知∠B=∠ADC,∠C=∠ADB,
∴△ABE∽△CDE,△ACE∽△BDE,
=,=
由AD為直徑可知∠DBA=∠DCA=90°,
∵DE=2,OE=3,
∴AO=OD=OE+ED=5,AE=8,
tanC•tanB=tan∠ADB•tan∠ADC======4.
故選C.
點評:求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,或者利用同角(或余角)的三角函數(shù)關(guān)系式求三角函數(shù)值.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•遵義模擬)用科學記數(shù)法表示0.0000210,結(jié)果是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遵義模擬)如圖,△ABC中,BD和CE是兩條高,如果∠A=45°,則
DE
BC
=
2
2
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遵義模擬)一元二次方程x2=5x的解為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遵義模擬)觀察下面方程的解法:x4-13x2+36=0.解:原方程可化為(x2-4)(x2-9)=0,∴(x+2)(x-2)(x+3)(x-3)=0,∴x+2=0或x-2=0或x+3=0或x-3=0,∴x1=2,x2=-2,x3=3,x4=-3.請根據(jù)此解法求出方程x2-3|x|+2=0的解為
x1=2,x2=1,x3=-2,x4=-1
x1=2,x2=1,x3=-2,x4=-1

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省濰坊市中考數(shù)學模擬試卷(一)(解析版) 題型:填空題

(2013•遵義模擬)寫出一條經(jīng)過第一、二、四象限,且過點(-1,3)的直線解析式   

查看答案和解析>>

同步練習冊答案