(2013•南充)如圖,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P為BC邊上一點(不與B,C重合),過點P作∠APE=∠B,PE交CD于E.
(1)求證:△APB∽△PEC;
(2)若CE=3,求BP的長.
分析:(1)由等腰梯形ABCD中,AD∥BC,AB=CD,可得∠B=∠C=60°,又由∠APE+∠EPC=∠B+∠BAP,∠APE=∠B,可證得∠BAP=∠EPC,根據(jù)有兩角對應(yīng)相等的三角形相似,即可證得:△APB∽△PEC;
(2)首先過點A作AF∥CD交BC于點F,則四邊形ADCF是平行四邊形,△ABF為等邊三角形,又由△APB∽△PEC,根據(jù)相似三角形的對應(yīng)邊成比例,即可求得答案.
解答:(1)證明:∵等腰梯形ABCD中,AD∥BC,AB=CD,
∴∠B=∠C=60°,
∵∠APC=∠B+∠BAP,
即∠APE+∠EPC=∠B+∠BAP,
∵∠APE=∠B,
∴∠BAP=∠EPC,
∴△APB∽△PEC;

(2)解:過點A作AF∥CD交BC于點F,
則四邊形ADCF是平行四邊形,△ABF為等邊三角形,
∴CF=AD=3,AB=BF=7-3=4,
∵△APB∽△PEC,
BP
EC
=
AB
PC
,
設(shè)BP=x,則PC=7-x,
∵EC=3,AB=4,
x
3
=
4
7-x
,
解得:x1=3,x2=4,
經(jīng)檢驗:x1=3,x2=4是原分式方程的解,
∴BP的長為:3或4.
點評:此題考查了等腰梯形的性質(zhì)、相似三角形的判定與性質(zhì)以及等邊三角形的判定與性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南充)如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南充)如圖,正方形ABCD的邊長為2
2
,過點A作AE⊥AC,AE=1,連接BE,則tanE=
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南充)如圖,在平行四邊形ABCD中,對角線AC,BD交于點O,經(jīng)過點O的直線交AB于E,交CD于F.
求證:OE=OF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南充)如圖,二次函數(shù)y=x2+bx-3b+3的圖象與x軸交于A,B兩點(點A在點B的左邊),交y軸于點C,且經(jīng)過點(b-2,2b2-5b-1).
(1)求這條拋物線的解析式;
(2)⊙M過A,B,C三點,交y軸于另一點D,求點M的坐標;
(3)連接AM,DM,將∠AMD繞點M順時針旋轉(zhuǎn),兩邊MA,MD與x軸,y軸分別交于點E,F(xiàn).若△DMF為等腰三角形,求點E的坐標.

查看答案和解析>>

同步練習冊答案