分析:(1)先分別根據(jù)負(fù)整數(shù)指數(shù)冪、0指數(shù)冪及有理數(shù)的乘方法則分別計(jì)算出各數(shù),再根據(jù)有理數(shù)混合運(yùn)算的法則進(jìn)行計(jì)算;
(2)根據(jù)冪的乘方與積的乘方法則進(jìn)行計(jì)算;
(3)先根據(jù)冪的乘方與積的乘方計(jì)算出各數(shù),再合并同類項(xiàng)即可;
(4)先去括號(hào),再合并同類項(xiàng);
(5)直接根據(jù)平方差公式進(jìn)行計(jì)算即可;
(6)分別根據(jù)完全平方公式及平方差公式計(jì)算出各數(shù),再合并同類項(xiàng);
(7)先根據(jù)整式的乘法計(jì)算出各數(shù),再合并同類項(xiàng)即可;
(8)先根據(jù)冪的乘方與積的乘方法則把原式化為(xm•xn)2的形式,再把xm=3,xn=2代入進(jìn)行計(jì)算.
解答:解:(1)原式=9+1-125÷25
=9+1-5
=5;
(2)原式=(
×1.5)
2008×(
)×(-1)
2009
=1×
×(-1)
=-
;
(3)原式=64a
6-9a
6+64a
6
=119a
6;
(4)原式=-3x
2+3xy+2xy-2x
2
=-5x
2+5xy;
(5)原式=m
2-(
n
2)
=m
2-
n
2;
(6)原式=4x
2+9y
2-12xy-(3xy-y
2+9x
2-3xy)
=4x
2+9y
2-12xy+y
2-9x
2
=-5x
2+10y
2-12xy;
(7)原式=4m
2-2mn+2mp+2mn-n
2+np-2mp+np-p
2
=4m
2-n
2-p
2+2np;
(8)原式=x
3m•x
2n=(x
m)
3•(x
n)
2,
∵x
m=3,x
n=2,
∴原式=3
3×2
2=27×4=108.
點(diǎn)評(píng):本題考查的是整式的混合運(yùn)算、有理數(shù)的混合運(yùn)算及冪的乘方與積的乘方法則,在解答此類題目時(shí)要注意各種運(yùn)算律的靈活運(yùn)用.