【題目】某校初三(1)班部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動,收集整理數(shù)據(jù)后,老師將減壓方式分為五類,并繪制了圖1、圖2兩個不完整的統(tǒng)計圖,請根據(jù)圖中的信息解答下列問題.
(1)初三(1)班接受調(diào)查的同學(xué)共有多少名;
(2)補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中的“體育活動C”所對應(yīng)的圓心角度數(shù);
(3)若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生;老師想從5名同學(xué)中任選兩名同學(xué)進行交流,直接寫出選取的兩名同學(xué)都是女生的概率.

【答案】
(1)解:由題意可得總?cè)藬?shù)為10÷20%=50名;
(2)解:聽音樂的人數(shù)為50﹣10﹣15﹣5﹣8=12名,“體育活動C”所對應(yīng)的圓心角度數(shù)= =108°,

補全統(tǒng)計圖得:


(3)解:畫樹狀圖得:

∵共有20種等可能的結(jié)果,選出都是女生的有2種情況,

∴選取的兩名同學(xué)都是女生的概率= =


【解析】(1)利用“享受美食”的人數(shù)除以所占的百分比計算即可得解;(2)求出聽音樂的人數(shù)即可補全條形統(tǒng)計圖;由C的人數(shù)即可得到所對應(yīng)的圓心角度數(shù);(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與選出兩名同學(xué)都是女生的情況,再利用概率公式即可求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準備開展“陽光體育活動”,決定開設(shè)以下體育活動項目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項,為了解選擇各種體育活動項目的學(xué)生人數(shù),隨機抽取了部分學(xué)生進行調(diào)查,并將通過獲得的數(shù)據(jù)進行整理,繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答問題:

(1)這次活動一共調(diào)查了 名學(xué)生;

(2)補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,選擇籃球項目的人數(shù)所在扇形的圓心角等于 度;

4)若該學(xué)校有1500人,請你估計該學(xué)校選擇足球項目的學(xué)生人數(shù)約是 人。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋里裝有紅、黃、綠三種顏色的球(除顏色不同外其余都相同),其中紅球有2個,黃球有1個,從中任意捧出1球是紅球的概率為
(1)試求袋中綠球的個數(shù);
(2)第1次從袋中任意摸出1球(不放回),第2次再任意摸出1球,請你用畫樹狀圖或列表格的方法,求兩次都摸到紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時間x(min)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問題:

1t= min.

2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,

則甲登山的的上升速度是 m/min;

請求出甲登山過程中,距地面的高度y(m)與登山時間x(min)之間的函數(shù)關(guān)系式.

當(dāng)甲、乙兩人距地面高度差為70m時,求x的值(直接寫出滿足條件的x值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負.如果從AB記為:A→B(+1,+4),從BA記為:B→A(-1,-4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.

(1)圖中A→C( , ),B→C( , ),C→ (+1, );

(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-1,-2),請在圖中標出P的位置;

(3)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;

(4)若圖中另有兩個格點M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應(yīng)記為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABCD,分別以AB,AD為邊分別向外作等邊三角形ABE和等邊三角形ADF,延長CBAE于點G,G在點A,E之間,連接CE,CF,EF,則下列結(jié)論不一定正確的是(  )

A. CDF≌△EBC B. CDF=EAF

C. ECF是等邊三角形 D. CGAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在RtABC中,AC=BC,C=90°,點D為AB邊的中點,EDF=90°,EDF繞點D旋轉(zhuǎn),它的兩邊分別交AC,CB(或它們的延長線)于點E,F.當(dāng)EDF繞點D旋轉(zhuǎn)到DEAC于點E時(如圖),易證SDEF+SCEF=SABC.

當(dāng)EDF繞點D旋轉(zhuǎn)到DE和AC不垂直時,在圖和圖這兩種情況下,上述結(jié)論是否成立?若成立,請給予證明;若不成立,S△DEF,S△CEF,S△ABC又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】均勻的正四面體的各面依次標有1,2,3,4四個數(shù)字.小明做了60次投擲實驗,結(jié)果統(tǒng)計如下:

朝下的數(shù)字

1

2

3

4

出現(xiàn)的次數(shù)

16

20

14

10

(1)計算上述實驗中“4”朝下的頻率.

(2)“根據(jù)實驗結(jié)果,投擲一次正四面體,出現(xiàn)2朝下的概率是”的說法正確嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列網(wǎng)格中建立平面直角坐標系如圖,每個小正方形的邊長均為1個單位長度.已知A(1,1)、B(3,4)和C(4,2).

(1)在圖中標出點A、B、C.

(2)將點C向下平移3個單位到D點,將點A先向左平移3個單位,再向下平移1個單位到E點,在圖中標出D點和E點.

(3)求△EBD的面積S△EBD

查看答案和解析>>

同步練習(xí)冊答案