精英家教網 > 初中數學 > 題目詳情

 請閱讀下列材料

問題:如圖1,在等邊三角形ABC內有一點P,且PA=2, PB=, PC=1.求∠BPC度數的大小和等邊三角形ABC的邊長.

李明同學的思路是:將△BPC繞點B逆時針旋轉60°,畫出旋轉后的圖形(如圖2).連接PP′,可得△P′PB是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.進而求出等邊△ABC的邊長為.問題得到解決.

請你參考李明同學的思路,探究并解決下列問題:如圖3,在正方形ABCD內有一點P,且PA=,BP=,PC=1.求∠BPC度數的大小和正方形ABCD的邊長.

 


­­

解:(1)如圖,將△BPC繞點B逆時針旋轉90°,得△BP′A,則△BPC≌△BP′A.

∴AP′=PC=1,BP=BP′=

連結P P′,

在Rt△BP′P中,

∵ BP=BP′=,∠PBP′=90°,

∴ P P′=2,∠BP′P=45°. 

在△AP′P中, AP′=1,P P′=2,AP=

,即AP′ 2 + PP′ 2 = AP2

∴ △AP′P是直角三角形,即∠A P′ P=90°.

∴ ∠AP′B=135°.

∴ ∠BPC=∠AP′B=135°.    

(2)過點B作BE⊥AP′ 交AP′ 的延長線于點E.

∴ ∠EP′ B=45°.

∴ EP′=BE=1.

∴ AE=2.

∴ 在Rt△ABE中,由勾股定理,得AB=.   

∴ ∠BPC=135°,正方形邊長為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

請閱讀下列材料:
問題:如圖1,在菱形ABCD和菱形BEFG中,點A,B,E在同一條直線上,P是線段DF的中點,連接PG,PC.若∠ABC=∠BEF=60°,探究PG與PC的位置關系及
PG
PC
的值.
小聰同學的思路是:延長GP交DC于點H,構造全等三角形,經過推理使問題得到解決.請你參考小聰同學的思路,探究并解決下列問題:
(1)寫出上面問題中線段PG與PC的位置關系及
PG
PC
的值;
(2)將圖1中的菱形BEFG繞點B順時針旋轉,使菱形BEFG的對角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問題中的其他條件不變(如圖2).你在(1)中得到的兩個結論是否發(fā)生變化?寫出你的猜想并加以證明;
(3)若圖1中∠ABC=∠BEF=2α(0°<α<90°),將菱形BEFG繞點B順時針旋轉任意角度,精英家教網原問題中的其他條件不變,請你直接寫出
PG
PC
的值(用含α的式子表示).

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

25、請閱讀下列材料:
已知:如圖1在Rt△ABC中,∠BAC=90°,AB=AC,點D、E分別為線段BC上兩動點,若∠DAE=45度.探究線段BD、DE、EC三條線段之間的數量關系.
小明的思路是:把△AEC繞點A順時針旋轉90°,得到△ABE′,連接E′D,使問題得到解決.請你參考小明的思路探究并解決下列問題:
(1)猜想BD、DE、EC三條線段之間存在的數量關系式,并對你的猜想給予證明;
(2)當動點E在線段BC上,動點D運動在線段CB延長線上時,如圖2,其它條件不變,(1)中探究的結論是否發(fā)生改變?請說明你的猜想并給予證明.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

25、請閱讀下列材料:
問題:如圖,在正方形ABCD和平行四邊形BEFG中,點A,B,E在同一條直線上,P是線段DF的中點,連接PG,PC.
探究:當PG與PC的夾角為多少度時,平行四邊形BEFG是正方形?
小聰同學的思路是:首先可以說明四邊形BEFG是矩形;然后延長GP交DC于點H,構造全等三角形,經過推理可以探索出問題的答案.
請你參考小聰同學的思路,探究并解決這個問題.
(1)求證:四邊形BEFG是矩形;
(2)PG與PC的夾角為
90
度時,四邊形BEFG是正方形.
理由:

查看答案和解析>>

科目:初中數學 來源: 題型:

請閱讀下列材料:
讓我們來規(guī)定一種運算:
.
ab
cd
.
=ad-bc
,例如:
.
23
45
.
=2×5-3×4=10-12=-2

再如,
.
x2
14
.
=4x-2
,按照這種運算的規(guī)定:請解答下列各個問題:
(1)
.
-12
-2
1
2
.
=
 
(只填最后結果);(2)化簡
.
(x+3y)2x
3y(2x+y)
.

查看答案和解析>>

同步練習冊答案