如圖,仿照此圖利用“兩個圓、兩個三角形和兩條平行線段”設(shè)計一個軸對稱圖案,并說明你所要表達(dá)的含義.

答案:
解析:

解:略,請同學(xué)們充分發(fā)揮自己的想象力.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀:如圖1,在△ABC和△DEF中,∠ABC=∠DEF=90°,AB=DE=a,BC=EF=b(a<b),B、C、D、E四點(diǎn)都在直線m上,點(diǎn)B與點(diǎn)D重合.
連接AE、FC,我們可以借助于S△ACE和S△FCE的大小關(guān)系證明不等式:a2+b2>2ab(b>a>0).
證明過程如下:
∵BC=b,BE=a,EC=b-a.
S△ACE=
1
2
EC•AB=
1
2
(b-a)a
S△FCE=
1
2
EC•FE=
1
2
(b-a)b

∵b>a>0
∴S△FCE>S△ACE
1
2
(b-a)b>
1
2
(b-a)a

∴b2-ab>ab-a2
∴a2+b2>2ab
解決下列問題:
(1)現(xiàn)將△DEF沿直線m向右平移,設(shè)BD=k(b-a),且0≤k≤1.如圖2,當(dāng)BD=EC時,k=
 
.利用此圖,仿照上述方法,證明不等式:a2+b2>2ab(b>a>0).
(2)用四個與△ABC全等的直角三角形紙板進(jìn)行拼接,也能夠借助圖形證明上述不等式.請你畫出一個示意圖,并簡要說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC和△DEF中,∠ABC=∠DEF=90°,AB=DE=a,BC=EF=b(a<b),B、C、D、E四點(diǎn)都在直線m上,點(diǎn)B與點(diǎn)D重合.連接AE、FC,我們可以借助于S△ACE和S△FCE的大小關(guān)系證明不等式:a2+b2>2ab(b>a>0).
精英家教網(wǎng)
解決下列問題:
(1)現(xiàn)將△DEF沿直線m向右平移,設(shè)BD=k(b-a),且0≤k≤1,如圖2.當(dāng)BD=EC時,k=
 
.并利用此圖,仿照上述方法,證明不等式:a2+b2>2ab(b>a>0)
(2)用四個與△ABC全等的直角三角形紙板進(jìn)行拼接,也能夠借助圖形證明上述不等式.請你畫出一個示意圖,并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省衢州華茂外國語學(xué)校九年級上學(xué)期期末檢測數(shù)學(xué)試卷(帶解析) 題型:解答題

閱讀材料,解答問題.
例 如圖,在△中,∠,∠,利用此等腰直角三角形你能求出的值嗎?

解:延長到點(diǎn),使,連結(jié)
設(shè)).
∵在△中,∠,∠
∴∠
,


(1)仿照上例,求出的值;
(2)在一次課外活動中,小劉從上例得到啟發(fā),用硬紙片做了兩個直角三角形,如圖1、圖2.圖1中,∠,∠,;圖2中,∠,∠,.圖3是小劉所做的一個實(shí)驗(yàn):他將△的直角邊與△的斜邊重合在一起,并將△沿方向移動.在移動過程中,、兩點(diǎn)始終在邊上(移動開始時點(diǎn)與點(diǎn)重合).
①在△沿方向移動的過程中,∠的度數(shù)逐漸__________.(填“不變”、“變大”、“變小”)
②在△移動過程中,是否存在某個位置,使得∠?如果存在,求出的長度;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省九年級上學(xué)期期末檢測數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀材料,解答問題.

例  如圖,在△中,∠,∠,利用此等腰直角三角形你能求出的值嗎?

解:延長到點(diǎn),使,連結(jié)

設(shè)).

∵在△中,∠,∠

∴∠

,

(1)仿照上例,求出的值;

(2)在一次課外活動中,小劉從上例得到啟發(fā),用硬紙片做了兩個直角三角形,如圖1、圖2.圖1中,∠,∠,;圖2中,∠,∠.圖3是小劉所做的一個實(shí)驗(yàn):他將△的直角邊與△的斜邊重合在一起,并將△沿方向移動.在移動過程中,、兩點(diǎn)始終在邊上(移動開始時點(diǎn)與點(diǎn)重合).

①在△沿方向移動的過程中,∠的度數(shù)逐漸__________.(填“不變”、“變大”、“變小”)

②在△移動過程中,是否存在某個位置,使得∠?如果存在,求出的長度;如果不存在,請說明理由.

 

 

查看答案和解析>>

同步練習(xí)冊答案