如圖,在△ABC中,AB=AC,AB的垂直平分線交AC于點E,已知△BCE的周長是8,AC比BC長2,則AC長為   
【答案】分析:利用線段的垂直平分線的性質(zhì)得到AE=BE,結合已知條件得到BC+AC=8,又AC比BC長2,即可求出.
解答:解:∵AB的垂直平分線交AC于點E
∴EB=EA
∵△BCE的周長是8
∴BC+AC=8
∵AC比BC長2,
∴AC=5.
故填5.
點評:此題主要考查線段的垂直平分線的性質(zhì)等幾何知識;進行線段的等量代換后得到到BC+AC=8是正確解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案