閱讀材料:
在平面直角坐標(biāo)系中,已知x軸上兩點(diǎn)A(x1,0),B(x2,0)的距離記作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意兩點(diǎn),我們可以通過(guò)構(gòu)造直角三角形來(lái)求AB間距離.
如圖,過(guò)A,B分別向x軸,y軸作垂線AM1、AN1和BM2、BN2,垂足分別是M1(x1,0),N1(0,y1),M2(x2,0),N2(0,y2),直線AN1交BM2于Q點(diǎn),在Rt△ABQ中,|AB|2=|AQ|2+|QB|2
∵|AQ|=|M1M2|=|x2-x1|,|QB|=|N1N2|=|y2-y1|,∴|AB|2=|x2-x1|2+|y2-y1|2
由此得任意兩點(diǎn)[A(x1,y1),B(x2,y2)]間距離公式為:|AB|=
(x2-x1)2+(y2-y1)2

(1)直接應(yīng)用平面內(nèi)兩點(diǎn)間距離公式計(jì)算,點(diǎn)A(1,-3),B(-2,1)之間的距離為
5
5
;
(2)平面直角坐標(biāo)系中的兩點(diǎn)A(1,3)、B(4,1),P為x軸上任一點(diǎn),當(dāng)PA+PB最小時(shí),直接寫(xiě)出點(diǎn)P的坐標(biāo)為
13
4
,0)
13
4
,0)
,PA+PB的最小值為
5
5
;
(3)應(yīng)用平面內(nèi)兩點(diǎn)間距離公式,求代數(shù)式
x2+(y-2)2
+
(x-3)2+(y-1)2
的最小值.
分析:(1)利用兩點(diǎn)間的距離公式|AB|=
(x2-x1)2+(y2-y1)2
解答;
(2)作點(diǎn)B關(guān)于x軸對(duì)稱的點(diǎn)B′,連接AB′,直線AB′于x軸的交點(diǎn)即為所求的點(diǎn)P;利用待定系數(shù)法求得直線AB′的解析式y(tǒng)=-
4
3
x+
13
3
,然后根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征來(lái)求點(diǎn)P的坐標(biāo);PA+PB的最小值就是線段AB′的長(zhǎng)度;
(3)已知代數(shù)式表示點(diǎn)(x,y)到點(diǎn)(0,2)和(3,1)的距離之和,由兩點(diǎn)之間線段最短來(lái)求代數(shù)式
x2+(y-2)2
+
(x-3)2+(y-1)2
的最小值.
解答:解:(1)|AB|=
(-2-1)2+(1+3)2
=5; 
故答案為:5;
                                              
(2)如圖,作點(diǎn)B關(guān)于x軸對(duì)稱的點(diǎn)B′,連接AB′,直線AB′于x軸的交點(diǎn)即為所求的點(diǎn)P.
①∵B(4,1),
∴B′(4,-1).
又∵A(1,3),
∴直線AB的解析式為:y=-
4
3
x+
13
3
,
當(dāng)y=0時(shí),x=
13
4
,即P(
13
4
,0);   
②PA+PB=PA+PB′=AB′=
(4-1)2+(-1-3)2
=5,即                                      
PA+PB的最小值為.
故答案為:(
13
4
,0);5;

(3)
x2+(y-2)2
+
(x-3)2+(y-1)2
=
(x-0)2+(y-2)2
+
(x-3)2+(y-1)2

故原式表示點(diǎn)(x,y)到點(diǎn)(0,2)和(3,1)的距離之和,
由兩點(diǎn)之間線段最短可得:點(diǎn)(x,y)在以(0,2)和(3,1)為端點(diǎn)的線段上時(shí),代數(shù)式
x2+(y-2)2
+
(x-3)2+(y-1)2
取最小值.
原式最小為
(0-3)2+(2-1)2
=
10
點(diǎn)評(píng):本題考查了一次函數(shù)綜合題.解答(2)題時(shí),是根據(jù)“兩點(diǎn)之間,線段最短”來(lái)找點(diǎn)P的位置的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料,完成填空:
在平面直角坐標(biāo)系中,當(dāng)函數(shù)的圖象產(chǎn)生平移,則函數(shù)的解析式會(huì)產(chǎn)生有規(guī)律的變化;反之,我們可以通過(guò)分析不同解析式的變化規(guī)律,推想到相應(yīng)的函數(shù)圖象間彼此的位置和形狀的關(guān)聯(lián).
不妨約定,把函數(shù)圖象先往左側(cè)平移2個(gè)單位,再往上平移1各單位,則不同類型函數(shù)解析式的變化可舉例如下:
y=3x2→y=3(x+2)2+1;y=3x3→y=3(x+2)3+1;y=3
x
→y=3
x+2
+1;y=3
3x
→y=3
3x-1
+1;y=
3
x
→y=
3
x
+1;…
(1)若把函數(shù)y=
3
x+2
+1圖象再往
 
平移
 
個(gè)單位,所得函數(shù)圖象的解析式為y=
3
x-1
+1;
(2)分析下列關(guān)于函數(shù)y=
3
x-1
+1圖象性質(zhì)的描述:
①圖象關(guān)于(1,1)點(diǎn)中心對(duì)稱;②圖象必不經(jīng)過(guò)第二象限;③圖象與坐標(biāo)軸共有2個(gè)交點(diǎn);④當(dāng)x>0時(shí),y隨著x取值的變大而減。渲姓_的是:
 
.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2013•西城區(qū)一模)先閱讀材料,再解答問(wèn)題:
小明同學(xué)在學(xué)習(xí)與圓有關(guān)的角時(shí)了解到:在同圓或等圓中,同。ɑ虻然。┧鶎(duì)的圓周角相等.如圖,點(diǎn)A、B、C、D均為⊙O上的點(diǎn),則有∠C=∠D.小明還發(fā)現(xiàn),若點(diǎn)E在⊙O外,且與點(diǎn)D在直線AB同側(cè),則有∠D>∠E.
請(qǐng)你參考小明得出的結(jié)論,解答下列問(wèn)題:

(1)如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,7),點(diǎn)B的坐標(biāo)為(0,3),點(diǎn)C的坐標(biāo)為(3,0).
①在圖1中作出△ABC的外接圓(保留必要的作圖痕跡,不寫(xiě)作法);
②若在x軸的正半軸上有一點(diǎn)D,且∠ACB=∠ADB,則點(diǎn)D的坐標(biāo)為
(7,0)
(7,0)
;
(2)如圖2,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,m),點(diǎn)B的坐標(biāo)為(0,n),其中m>n>0.點(diǎn)P為x軸正半軸上的一個(gè)動(dòng)點(diǎn),當(dāng)∠APB達(dá)到最大時(shí),直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年廣東省汕頭市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

閱讀材料:
在平面直角坐標(biāo)系中,已知x軸上兩點(diǎn)A(x1,0),B(x2,0)的距離記作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意兩點(diǎn),我們可以通過(guò)構(gòu)造直角三角形來(lái)求AB間距離.
如圖,過(guò)A,B分別向x軸,y軸作垂線AM1、AN1和BM2、BN2,垂足分別是M1(x1,0),N1(0,y1),M2(x2,0),N2(0,y2),直線AN1交BM2于Q點(diǎn),在Rt△ABQ中,|AB|2=|AQ|2+|QB|2
∵|AQ|=|M1M2|=|x2-x1|,|QB|=|N1N2|=|y2-y1|,∴
由此得任意兩點(diǎn)[A(x1,y1),B(x2,y2)]間距離公式為:
(1)直接應(yīng)用平面內(nèi)兩點(diǎn)間距離公式計(jì)算,點(diǎn)A(1,-3),B(-2,1)之間的距離為_(kāi)_____;
(2)平面直角坐標(biāo)系中的兩點(diǎn)A(1,3)、B(4,1),P為x軸上任一點(diǎn),當(dāng)PA+PB最小時(shí),直接寫(xiě)出點(diǎn)P的坐標(biāo)為_(kāi)_____,PA+PB的最小值為_(kāi)_____;
(3)應(yīng)用平面內(nèi)兩點(diǎn)間距離公式,求代數(shù)式+的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀下列材料:
在平面直角坐標(biāo)系中,若點(diǎn)P1(x1,y1)、P2(x2,y2),則P1、P2兩點(diǎn)間的距離為數(shù)學(xué)公式.例如:若
P1(3,4)、P2(0,0),則P1、P2兩點(diǎn)間的距離為數(shù)學(xué)公式
設(shè)⊙O是以原點(diǎn)O為圓心,以1為半徑的圓,如果點(diǎn)P(x,y)在⊙O上,那么有等式數(shù)學(xué)公式,即x2+y2=1成立;反過(guò)來(lái),如果點(diǎn)P(x,y)的坐標(biāo)滿足等式x2+y2=1,那么點(diǎn)P必在⊙O上,這時(shí),我們就把等式x2+y2=1稱為⊙O的方程.
在平面直角坐標(biāo)系中,若點(diǎn)P0(x0,y0),則P0到直線y=kx+b的距離為數(shù)學(xué)公式
請(qǐng)解答下列問(wèn)題:
(I)寫(xiě)出以原點(diǎn)O為圓心,以r(r>0)為半徑的圓的方程.
(II)求出原點(diǎn)O到直線數(shù)學(xué)公式的距離.
(III)已知關(guān)于x、y的方程組:數(shù)學(xué)公式,其中n≠0,m>0.
①若n取任意值時(shí),方程組都有兩組不相同的實(shí)數(shù)解,求m的取值范圍.
②當(dāng)m=2時(shí),記兩組不相同的實(shí)數(shù)解分別為(x1,y1)、(x2,y2),
求證:數(shù)學(xué)公式是與n無(wú)關(guān)的常數(shù),并求出這個(gè)常數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案