(1)解不等式:
x-3
2
-1>
x-5
3

(2)做一做:
精英家教網(wǎng)
用四塊如圖1的瓷磚拼成一個(gè)正方形,使拼成的圖案成軸對(duì)稱(chēng)圖形,請(qǐng)你在圖2,圖3,圖4中各畫(huà)出一種拼法(要求三種拼法各不相同,所畫(huà)圖案中的陰影部分用斜線表示)
(3)讀一讀:
式子“1+2+3+4+5+…+100”表示1開(kāi)始的100個(gè)連續(xù)自然數(shù)的和.
由于上述式子比較長(zhǎng),書(shū)寫(xiě)也不方便,為了簡(jiǎn)便起見(jiàn),我們可以將
“1+2+3+4+5+…+100”表示為
100
n=1
n
,這里“Σ”是求和符號(hào).
例如:“1+3+5+7+9+…+99”(即從1開(kāi)始的100以?xún)?nèi)的連續(xù)奇數(shù)的和)可表示為
50
n=1
(2n-1)
;又如:“13+23+33+43+53+63+73+83+93+103”可表示為
10
n=1
n3

同學(xué)們,通過(guò)對(duì)以上材料的閱讀,請(qǐng)解答下列問(wèn)題:
<1>2+4+6+8+10+…+100(即從2開(kāi)始的100以?xún)?nèi)的連續(xù)偶數(shù)的和)用求和符號(hào)可表示為
 

<2>計(jì)算:
5
n=1
(n2-1)=
 
(填寫(xiě)最后的計(jì)算結(jié)果).
分析:(1)根據(jù)分式不等式的解法;先通分,再移項(xiàng),最后化簡(jiǎn)可得其解集;
(2)根據(jù)軸對(duì)稱(chēng)的定義,結(jié)合題意;可得答案,注意全面考慮多種情況;
(3)根據(jù)題意的表述,可得“Σ”這個(gè)求和符號(hào)的意義與表示方法,進(jìn)而可2+4+6+8+10+…+100的表示方法,最后得到
5
n=1
(n2-1)=
1+3+8+15+24,計(jì)算可得答案.
解答:解:(1)3(x-3)-6>2(x-5),(2分)
3x-9-6>2x-10,(3分)
3x-2x>-10+9+6,(4分)
x>5.(5分)
(2)
精英家教網(wǎng)
(1分),共(3分).

(3)①
50
n=1
2n
.(1分)
∑limit
s
5
n=1
(n2-1)
=0+3+8+15+24=50.(1分)
點(diǎn)評(píng):本題是一道找規(guī)律的題目,要求學(xué)生通過(guò)觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算:
tan60°
cot45°-sin60°

(2)解不等式組:
x-1
2
x+1
3
(x-3)2<(x+4)(x-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算:(-2)2-(2-
3
0+2•tan45°;
(2)解不等式:
x
6
-1>
x-2
3

(3)先將
x2+2x
x-1
•(1-
1
x
)化簡(jiǎn),然后請(qǐng)自選一個(gè)你喜歡的x值,再求原式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解不等式組
3x-5>x-3
x
3
x+2
5
.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解不等式組或方程組:(1)
2x-1≤3
3(x-1)>-6
(2)
x-2y=6
3x+2y=10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解不等式組:
2(x-3)≤5x+6
4x<3x-1
,并將它的解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

同步練習(xí)冊(cè)答案