我們容易發(fā)現(xiàn):反比例函數(shù)的圖象是一個中心對稱圖形,你可以利用這一結論解決問題。如圖,在同一直角坐標系中,正比例函數(shù)的圖象可以看作是將x軸所在的直線繞著原點O逆時針旋轉度后的圖形。它與反比例函數(shù)的圖象分別交于第一、三象限的點B、D,已知點A(-m,0)、C(m,0)。

(1)判斷并填寫,不論取何值,四邊形ABCD的形狀一定是______;

(2)①當點B坐標為(p,1)時,四邊形ABCD是矩形,試求p、和m的值;

②觀察猜想:對①中的m值,能使四邊形ABCD為矩形的點B共有幾個?(不必說理)

(3)試探究:四邊形ABCD能不能是菱形?若能,直接寫出B點的坐標;若不能,說明理由。

 

【答案】

(1)平行四邊形;(2)P==30°,m=2;(3)2個;(4)不能

【解析】

試題分析:(1)由于反比例函數(shù)的圖象是一個中心對稱圖形,點B、D是正比例函數(shù)與反比例函數(shù)圖象的交點,所以點B與點D關于點O成中心對稱,則OB=OD,又OA=OC,根據(jù)對角線互相平分的四邊形是平行四邊形,可得出四邊形ABCD的形狀;

(2)①把點B(p,1)代入,即可求出p的值;過B作BE⊥x軸于E,在Rt△BOE中,根據(jù)正切函數(shù)的定義求出tanα的值,得出α的度數(shù);要求m的值,首先解Rt△BOE,得出OB的長度,然后根據(jù)進行的對角線相等得出OA=OB=OC=OD,從而求出m的值;②當m=2時,設B(x,),則x>0,由OB=2,得出,解此方程,得滿足條件的x的值有兩個,故能使四邊形ABCD為矩形的點B共有兩個;

(3)假設四邊形ABCD為菱形,根據(jù)菱形的對角線垂直且互相平分,可知AC⊥BD,且AC與BD互相平分,又AC在x軸上,所以BD應在y軸上,這與“點B、D分別在第一、三象限”矛盾,所以四邊形ABCD不可能為菱形.

(1)平行四邊形;

(2)∵矩形對角線相等且互相平分

∴OC=OB,又B(P,1)在上,則P=

∴B(,1),則OB=2,

∴OC=2,則m=2,∠BOC=30°,即=30°

(3)當m=2時,點B共有2個;

(4)四邊形ABCD不能是菱形。理由如下:

∵反比例圖象與y軸永無交點,即BD不可能在y軸上。

∴BD不垂直于AC

即四邊形ABCD的對角線一定不垂直

∴四邊形ABCD不能為菱形

考點:平行四邊形的判定,矩形、菱形的性質及三角函數(shù)的定義

點評:本題知識點較多,綜合性強,難度較大,一般是中考壓軸題,需要特別注意.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)我們容易發(fā)現(xiàn):反比例函數(shù)的圖象是一個中心對稱圖形.你可以利用這一結論解決問題.如圖,在同一直角坐標系中,正比例函數(shù)的圖象可以看作是:將x軸所在的直線繞著原點O逆時針旋轉α度角后的圖形.若它與反比例函數(shù)y=
3
x
的圖象分別交于第一、三象限的點B,D,已知點A(-m,O)、C(m,0).
(1)直接判斷并填寫:不論α取何值,四邊形ABCD的形狀一定是
 
;
(2)①當點B為(p,1)時,四邊形ABCD是矩形,試求p,α,和m的值;
②觀察猜想:對①中的m值,能使四邊形ABCD為矩形的點B共有幾個?(不必說理)
(3)試探究:四邊形ABCD能不能是菱形?若能,直接寫出B點的坐標,若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們容易發(fā)現(xiàn):反比例函數(shù)的圖象是一個中心對稱圖形.你可以利用這一結論解決問題.如圖,在同一直角坐標系中,正比例函數(shù)的圖象可以看作是:將x軸所在的直線繞著原點O逆時針旋轉α度角后的圖形.若它與反比例函數(shù)y=
1x
的圖象分別交于第一、三象限的點B、D,已知點A(-m,0)、C(m,0).
(1)直接判斷并填寫:不論α取何值,四邊形ABCD的形狀一定是
平行四邊形
平行四邊形
;
(2)當點B為(p,1)時,四邊形ABCD是矩形,直接寫出p、α、和m的值;
(3)試探究:四邊形ABCD能不能是菱形?若能,直接寫出B點的坐標,若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江西省吉安朝宗實驗學校九年級第一次段考數(shù)學試卷(帶解析) 題型:解答題

我們容易發(fā)現(xiàn):反比例函數(shù)的圖象是一個中心對稱圖形,你可以利用這一結論解決問題。如圖,在同一直角坐標系中,正比例函數(shù)的圖象可以看作是將x軸所在的直線繞著原點O逆時針旋轉度后的圖形。它與反比例函數(shù)的圖象分別交于第一、三象限的點B、D,已知點A(-m,0)、C(m,0)。

(1)判斷并填寫,不論取何值,四邊形ABCD的形狀一定是______;
(2)①當點B坐標為(p,1)時,四邊形ABCD是矩形,試求p、和m的值;
②觀察猜想:對①中的m值,能使四邊形ABCD為矩形的點B共有幾個?(不必說理)
(3)試探究:四邊形ABCD能不能是菱形?若能,直接寫出B點的坐標;若不能,說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:福建省中考真題 題型:解答題

我們容易發(fā)現(xiàn):反比例函數(shù)的圖象是一個中心對稱圖形,你可以利用這一結論解決問題。
如圖,在同一直角坐標系中,正比例函數(shù)的圖象可以看作是:將x軸所在的直線繞著原點O逆時針旋轉α度角后的圖形,若它與反比例函數(shù)的圖象分別交于第一、三象限的點B,D,已知點A(-m,0)、C(m,0)。
(1)直接判斷并填寫:不論α取何值,四邊形ABCD的形狀一定是_______;
(2)①當點B為(p,1)時,四邊形ABCD是矩形,試求p,α,和m的值;
②觀察猜想:對①中的m值,能使四邊形ABCD為矩形的點B共有幾個?(不必說理)
(3)試探究:四邊形ABCD能不能是菱形?若能,直接寫出B點的坐標,若不能,說明理由。

查看答案和解析>>

同步練習冊答案