如圖,D,E分別是△ABC的邊AB,AC上的點(diǎn),且DE∥BC,如果AD=2cm,DB=4cm,△ADE的周長(zhǎng)是10cm,那么△ABC的周長(zhǎng)等于( 。
分析:由DE∥BC,即可得△ADE∽△ABC,又由相似三角形對(duì)應(yīng)周長(zhǎng)的比等于相似比,即可得△ADE的周長(zhǎng):△ABC的周長(zhǎng)=AD:AB,繼而可求得答案.
解答:解:∵DE∥BC,
∴△ADE∽△ABC,
∴△ADE的周長(zhǎng):△ABC的周長(zhǎng)=AD:AB,
∵AD=2cm,DB=4cm,
∴AB=AD+BD=6cm,
∴△ADE的周長(zhǎng):△ABC的周長(zhǎng)=1:3,
∵△ADE的周長(zhǎng)是10cm,
∴△ABC的周長(zhǎng)等于30cm.
故選C.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,E、F分別是等腰△ABC的腰AB、AC的中點(diǎn).用尺規(guī)在BC邊上求作一點(diǎn)M,使四邊形AEMF為菱形.
(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:AB、AC分別是⊙O的直徑和弦,D為弧AC上一點(diǎn),DE⊥AB于點(diǎn)H,交⊙O于點(diǎn)E,交AC于點(diǎn)F.P為ED延長(zhǎng)線上一點(diǎn),連PC.
(1)若PC與⊙O相切,判斷△PCF的形狀,并證明.
(2)若D為弧AC的中點(diǎn),且
BC
AB
=
3
5
,DH=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB和AC分別是⊙O的直徑和弦,OD⊥AC于D點(diǎn),若OA=4,∠A=30°,則BD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,E、F分別是正方形ABCD邊BC、AD上的點(diǎn),且BE=DF
求證:(1)△ABE≌△CDF;
      (2)AE∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

桌上放著一個(gè)圓柱和一個(gè)長(zhǎng)方體,如圖(1),請(qǐng)說出下列三幅圖(如圖(2))分別是從哪個(gè)方向看到的.

查看答案和解析>>

同步練習(xí)冊(cè)答案