【題目】數(shù)學(xué)閱讀:

古希臘數(shù)學(xué)家海倫曾提出一個(gè)利用三角形三邊之長(zhǎng)求面積的公式:若一個(gè)三角形的三邊長(zhǎng)分別為ab、c,則這個(gè)三角形的面積為,其中.這個(gè)公式稱為海倫公式

數(shù)學(xué)應(yīng)用:

如圖1,在ABC中,已知AB=9,AC=8,BC=7.

1)請(qǐng)運(yùn)用海倫公式求ABC的面積;

2)設(shè)AB邊上的高為AC邊上的高,求的值;

3)如圖2,AD、BEABC的兩條角平分線,它們的交點(diǎn)為I,求ABI的面積.

【答案】1 ABC面積是;(2;(3SABC =

【解析】分析:(1)直接代入海倫公式計(jì)算.(2)利用海倫公式求出面積,再用一般求三角形面積公式求高.(2)角平分線的交點(diǎn),到各個(gè)邊的距離相等,所以可以用三個(gè)三角形的面積等于總面積,且高都相等,列方程可求出角分線到各邊的距離.

詳解:

1 =12ABC面積是 .

2等面積法求出,

3)如圖,過點(diǎn)IIFAB、IGAC、IHBC,垂足分別為點(diǎn)F、G、H

AD、BE分別為ABC的角平分線,∴IF=IH=IG,

SABC=SABI+SACI+SBCI, 9IF+8IF+7IF=,解得IF=

SABC =ABFI=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1+∠2=180°,∠3=∠B,∠4=65°,求證∠ACB=∠4.請(qǐng)?zhí)羁胀?/span>

成證明過程:

∵∠1+∠2=180°______________∠1+∠______=180°

∴∠2=∠DFE___________________

∴AB∥EF____________________

∴∠3=∠ADE____________

又∵∠3=∠B

∴∠ADE=∠_______

∴DE∥BC____________

∴∠ACB=∠4_______________

∴∠ACB=65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】郵遞員騎摩托車從郵局出發(fā),先向東騎行2km到達(dá)A村,繼續(xù)向東騎行3km到達(dá)B村,然后向西騎行9kmC村,最后回到郵局.

(1)以郵局為原點(diǎn),以向東方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示1km,請(qǐng)你在數(shù)軸上表示出A、BC三個(gè)村莊的位置;

(2)C村離A村有多遠(yuǎn)?

(3)若摩托車每1km耗油0.03升,這趟路共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)將進(jìn)價(jià)為4000元的電視以4400元售出,平均每天能售出6臺(tái).為了配合國(guó)家財(cái)政推出的“節(jié)能家電補(bǔ)貼政策”的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,調(diào)查發(fā)現(xiàn):這種電視的售價(jià)每降價(jià)50元,平均每天就能多售出3臺(tái).
(1)現(xiàn)設(shè)每臺(tái)電視降價(jià)x元,商場(chǎng)每天銷售這種電視的利潤(rùn)是y元,請(qǐng)寫出y與x之間的函數(shù)表達(dá)式.(不要求寫出自變量的取值范圍)
(2)每臺(tái)電視降價(jià)多少元時(shí),商場(chǎng)每天銷售這種電視的利潤(rùn)最高?最高利潤(rùn)是多少?
(3)商場(chǎng)要想在這種電視銷售中每天盈利3600元,同時(shí)又要使百姓得到更多實(shí)惠,每臺(tái)電視應(yīng)降價(jià)多少元?根據(jù)以上的結(jié)論,請(qǐng)你直接寫出售價(jià)在什么范圍時(shí),每個(gè)月的利潤(rùn)不低于3600元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= (k≠0)與一次函數(shù)y=kx+k(k≠0)在同一平面直角坐標(biāo)系內(nèi)的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC的兩邊分別平行于∠DEF的兩條邊,且∠ABC=45°.

圖1      圖2

(1)圖1中:∠DEF=_________,圖2中:∠DEF=_________;

(2)請(qǐng)觀察圖1、圖2中∠DEF分別與∠ABC有怎樣的關(guān)系,請(qǐng)你歸納出一個(gè)命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,正方形A′B′C′D′的頂點(diǎn)A′與點(diǎn)O重合,A′B′BC于點(diǎn)EA′D′CD于點(diǎn)F

1)求證:OE=OF;

2)若正方形ABCD的對(duì)角線長(zhǎng)為4,求兩個(gè)正方形重疊部分的面積為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我縣中小學(xué)讀書活動(dòng)中,某校對(duì)部分學(xué)生做了一次主題為我最喜愛的圖書的調(diào)查活動(dòng),將圖書分為甲、乙、丙、丁四類,學(xué)生可根據(jù)自己的愛好任選其中一類,學(xué)校根據(jù)調(diào)查情況進(jìn)行了統(tǒng)計(jì),并繪制了不完整條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

請(qǐng)你結(jié)合圖中的信息,解答下列問題(其中(1)、(2)直接填答案即可);

(1)本次調(diào)查了 名學(xué)生;

(2)被調(diào)查的學(xué)生中,最喜愛丁類圖書的有  人,最喜愛甲類圖書的人數(shù)被調(diào)查人數(shù)的  %.

(3)在最喜愛丙類圖書的學(xué)生中,女生人數(shù)是男生人數(shù)的1.5倍,若這所學(xué)校約有學(xué)生1800人,請(qǐng)你估計(jì)該校最喜愛丙類圖書的女生和男生分別有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,剪兩張對(duì)邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是(  )

A. ABC=ADC,BAD=BCD B. AB=BC

C. AB=CD,AD=BC D. DAB+BCD=180°

查看答案和解析>>

同步練習(xí)冊(cè)答案