如圖,梯形紙片ABCD,已知AB∥CD,AD=BC,AB=6,CD=3.將該梯形紙片沿對角線AC折疊,點D恰與AB邊上的E點重合,則∠B=    度.
【答案】分析:由折疊的性質知CD=CE=3,∠D=∠AEC=180°-∠CEB,易證明四邊形CDAE是平行四邊形,根據(jù)平行四邊形的性質可得BE=CE=BC,判定△CEB是等邊三角形,則有∠B=60°.
解答:解:∵AB∥CD
∴∠D+∠DAB=180°
∵CD=CE=3,∠D=∠AEC=180°-∠CEB
∴∠DAE=∠CEB
∴CE∥AD
∴四邊形CDAE是平行四邊形
∴AD=CE=CB=3,
∴AE=AD=3
∴BE=AB-AE=3
∴BE=CE=BC
即△CEB是等邊三角形
∴∠B=60°.
點評:本題利用了:1、折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;2、平行四邊形和等邊三角形的判定和性質求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•六合區(qū)一模)我們可以將一個紙片通過剪切,結合圖形的平移、旋轉、翻折,重新拼接成一個新的圖形.如圖1,沿△ABC的中位線DE剪切,將△ADE繞點E順時針旋轉180°,可得到?BCFD.請嘗試解決下面問題(寫畫法,保留痕跡,并作必要說明):
(1)將梯形紙片剪拼成平行四邊形:請在圖2中畫出示意圖,要求用兩種不同的畫法,并簡要說明如何剪拼和變換的;

(2)如圖3,將四邊形ABCD剪拼成平行四邊形.在圖中畫出示意圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一張等腰直角三角形紙片ABC,∠A=90°,AB=AC=2
2
,另有一張等腰梯形紙片DEFG,DG∥EF,DE=GF.現(xiàn)將兩張紙片疊放在一起(如圖1),此時梯形的下底EF與BC邊完全重合,梯形的兩腰分別落在AB,AC上,且D,G恰好分別是AB,AC的中點.
(1)求BC的長及等腰梯形DEFG的面積;
(2)實驗與探究(備用圖供實驗、探究使用)
如圖2,固定△ABC,將等腰梯形DEFG以每秒1厘米的速度沿射線BC方向平行移動,宜到點E與點C重合時停止,設運動時間為x秒時,等腰梯形平移到D1EFG1的位置.
①當x為何值時,四邊形DBED1是菱形,并說明理由.
②設△ABC與等腰梯形D1EFG1重疊部分的面積為y,直接寫出y與x之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省興化市九年級上學期期中考試數(shù)學試卷(解析版) 題型:選擇題

如圖,在一張△ABC紙片中, ∠C=90°, ∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有一個角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為(      )

A.1       B.2         C.3          D.4

 

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江蘇省海陵區(qū)九年級第一學期期末考試數(shù)學卷 題型:選擇題

如圖,在一張△ABC紙片中, ∠C=90°, ∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有一個角為60°的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為(      )

 

A.1       B.2         C.3          D.4

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年河北邯鄲市畢業(yè)生升學模擬考試數(shù)學試卷(二) 題型:填空題

如圖7-1,△ABC是直角三角形,如果用四張與△ABC全等的三角形紙片恰好拼成一個等腰梯形,如圖7-2,那么的值是               

 

查看答案和解析>>

同步練習冊答案