8、如圖所示,直線AB、CD相交于點O,且∠AOD+∠BOC=100°,則∠AOC是( 。
分析:兩直線相交,對頂角相等,即∠AOD=∠BOC,已知∠AOD+∠BOC=100°,可求∠AOD;又∠AOD與∠AOC互為鄰補角,即∠AOD+∠AOC=180°,將∠AOD的度數(shù)代入,可求∠AOC.
解答:解:∵∠AOD與∠BOC是對頂角,
∴∠AOD=∠BOC,
又已知∠AOD+∠BOC=100°,
∴∠AOD=50°.
∵∠AOD與∠AOC互為鄰補角,
∴∠AOC=180°-∠AOD=180°-50°=130°.
故選B.
點評:本題考查對頂角的性質(zhì)以及鄰補角的定義,是一個需要熟記的內(nèi)容.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖所示,直線AB、CD相交于點O.若OM=ON=MN,那么∠APQ+∠CQP=
240°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖所示,直線AB與x軸交于A,與y軸交于B.
(1)寫出A,B兩點的坐標(biāo);
(2)求直線AB的函數(shù)解析式;
(3)當(dāng)x=5時,求y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,直線AB與CD相交于點O,∠DOE=60°,∠BOE=27°,求∠BOD,∠AOD,∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,直線AB、CD相交于點O,∠BOD=40°,OA平分∠EOC,則∠EOD的度數(shù)為
100°
100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,直線AB、CD、EF相交于點O,且EF⊥CD,若∠AOE=30°,則∠AOC=
60
60
°,∠AOF=
150
150
°,∠BOC=
120
120
°.

查看答案和解析>>

同步練習(xí)冊答案