(2013•鹽城模擬)如圖,在△ABC中,AD平分∠BAC,交BC于D,將A、D重合折疊,折痕交AB于E,交AC于F,連接DE、DF,
(1)判斷四邊形AEDF的形狀并說明理由;
(2)若AB=6,AC=8,求DF的長.
分析:(1)首先由折疊的性質(zhì)可得:AE=ED,AF=FD,又由AD平分∠BAC,易證得四邊形AEDF是平行四邊形,則可得AE=ED=DF=AF,繼而可證得四邊形AEDF是菱形;
(2)首先設(shè)DF=x,由DF∥AB,即可證得△CDF∽△CBA,然后由相似三角形的對應邊成比例,即可求得DF的長.
解答:解:(1)四邊形AEDF是菱形.
理由:由折疊的性質(zhì)可得:AE=ED,AF=FD,
∴∠1=∠3,∠2=∠4,
∵AD平分∠BAC
∴∠1=∠2,
∴∠1=∠4,∠2=∠3,
∴AE∥DF,AF∥ED,
∴四邊形AEDF是平行四邊形,
∴AE=DF,AF=DE,
∴AE=ED=DF=AF,
∴四邊形AEDF是菱形;

(2)設(shè)DF=x,則AF=x,
∴CF=AC-AF=8-x,
∵DF∥AB,
∴△CDF∽△CBA,
DF
AB
=
CF
AC

x
6
=
8-x
8
,
解得:x=
24
7

∴DF=
24
7
點評:此題考查了相似三角形的判定與性質(zhì)、菱形的判定與性質(zhì)以及折疊的性質(zhì).此題難度適中,注意掌握折疊前后圖形的對應關(guān)系,注意掌握數(shù)形結(jié)合思想與方程思想的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•鹽城模擬)如圖所示,在建立平面直角坐標系后,△ABC頂點A的坐標為(1,-4),若以原點O為位似中心,在第二象限內(nèi)畫△ABC的位似圖形△A′B′C′,使△A′B′C′與△ABC的位似比等于
1
2
,則點A′的坐標為
(-
1
2
,2)
(-
1
2
,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鹽城模擬)2012年元月的某一天,我市的最低氣溫為-3℃,最高氣溫為4℃,那么這一天我市的日溫差是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鹽城模擬)典典同學學完統(tǒng)計知識后,隨機調(diào)查了她家所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形和條形統(tǒng)計圖:

請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:
(1)扇形統(tǒng)計圖中a=
20%
20%
,b=
12%
12%
;并補全條形統(tǒng)計圖;
(2)若該轄區(qū)共有居民3500人,請估計年齡在0~14歲的居民的人數(shù).
(3)一天,典典知道了轄區(qū)內(nèi)60歲以上的部分老人參加了市級門球比賽,比賽的老人們分成甲、乙兩組,典典很想知道甲乙兩組的比賽結(jié)果,王大爺告訴說,甲組與乙組的得分和為110,甲組得分不低于乙組得分的1.5倍,甲組得分最少為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鹽城模擬)已知四邊形ABCD的外接圓⊙O的半徑為5,對角線AC與BD的交點為E,且AB2=AE•AC,BD=8,
(1)判斷△ABD的形狀并說明理由;
(2)求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鹽城模擬)如圖(1),分別以兩個彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標系(O、C、F三點在x軸正半軸上).若⊙P過A、B、E三點(圓心在x軸上)交y軸于另一點Q,拋物線y=
14
x2+bx+c
經(jīng)過A、C兩點,與x軸的另一交點為G,M是FG的中點,B點坐標為(2,2).
(1)求拋物線的函數(shù)解析式和點E的坐標;
(2)求證:ME是⊙P的切線;
(3)如圖(2),點R從正方形CDEF的頂點E出發(fā)以1個單位/秒的速度向點F運動,同時點S從點Q出發(fā)沿y軸以5個單位/秒的速度向上運動,連接RS,設(shè)運動時間為t秒(0<t<1),在運動過程中,正方形CDEF在直線RS下方部分的面積是否變化?若不變,說明理由并求出其值;若變化,請說明理由;

查看答案和解析>>

同步練習冊答案