在數(shù)學(xué)中,為了簡(jiǎn)便,記=1+2+3+…+(n-1)+ n.
1。1,2!=2×1,3。3×2×1,…,n。絥×(n-1)×(n-2)×…×3×2×1.
+=         

0

解析試題考查知識(shí)點(diǎn):
思路分析:
具體解答過(guò)程:
=1+2+3+…+(n-1)+ n
=1+2+3+…+2008+ 2009,=1+2+3+…+2009+2010
=(1+2+3+…+2008+ 2009)-(1+2+3+…+2009+2010)=-2010
∵n。絥×(n-1)×(n-2)×…×3×2×1
==2010
+=-2010+2010=0
試題點(diǎn)評(píng):既要考慮新規(guī)則,又必須考慮老規(guī)則。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)中,為了簡(jiǎn)便,記:
n
k=1
k
=1+2+3+…+(n-1)+n,1!=1,2!=2×1,3!=3×2×1…n!=n×(n-1)(n-2)…×3×2×1,則
2006
k=1
k-
2007
k=1
k+
2007!
2006!
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)中,為了簡(jiǎn)便,記
n
k=1
k=1+2+3+…+(n-1)+n
,
10
k=1
((x+k))
=(x+1)+(x+2)+…+(x+10).
(1)請(qǐng)你用以上記法表示:1+2+3+…+2008=
 

(2)化簡(jiǎn):
10
k=1
(x-k)
;
(3)化簡(jiǎn):
2008
k=1
(x-k)2-
2007
k=1
(x-k)2-20082
;
(4)化簡(jiǎn):
3
k=1
[(x-k)(x-k-1)]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)中,為了簡(jiǎn)便,記
n
k=1
k=1+2+3+…+(n-1)+n
.1!=1,2!=2×1,3!=3×2×1,…,n!=n×(n-1)×(n-2)×…×3×2×1.則
2010
k=1
k-
2011
k=1
k+
2011!
2010!
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)中,為了簡(jiǎn)便,記
n
k=1
k=1+2+3+…+(n-1)+n
.1!=1,2!=2×1,3!=3×2×1,…,n!=n×(n-1)×(n-2)×…×3×2×1,則
2009
k=1
k-
2010
k=1
k+
2010!
2009!
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)中,為了簡(jiǎn)便,記
n
k=1
k
=1+2+3+…+(n-1)+n,
n
k=1
(x+k)
=(x+1)+(x+2)+…+(x+n).
(1)請(qǐng)你用以上記法表示:1+2+3+…+2011=
2011
k=1
k
2011
k=1
k
;
(2)化簡(jiǎn):
n
k=1
(x-k)
;
(3)化簡(jiǎn):
3
k=1
[(x-k)(x-k-1)].

查看答案和解析>>

同步練習(xí)冊(cè)答案