22、如圖,已知AC⊥BC,CD⊥AB,DE⊥AC,∠1與∠2互補,判斷HF與AB是否垂直,并說明理由(填空).
解:垂直.理由如下:
∵DE⊥AC,AC⊥BC,∴∠AED=∠ACB=90°(垂直的意義)
∴DE∥BC(
同位角相等,兩直線平行

∴∠1=∠DCB(
兩直線平行,內(nèi)錯角相等

∵∠1與∠2互補(已知),
∴∠DCB與∠2互補
DC
FH
同旁內(nèi)角互補,兩直線平行

∠BFH
=∠CDB(
兩直線平行,同位角相等

∵CD⊥AB,∴∠CDB=90°,∴∠HFB=90°,∴HF⊥AB.
分析:因為CD⊥AB,所以只要求出FH∥DC,即可得出結(jié)論.
解答:解:垂直.理由如下:
∵DE⊥AC,AC⊥BC,
∴∠AED=∠ACB=90°(垂直的意義)
∴DE∥BC(同位角相等,兩直線平行),
∴∠1=∠DCB(兩直線平行,內(nèi)錯角相等);
∵∠1與∠2互補(已知),
∴∠DCB與∠2互補,
∴DC∥FH(同旁內(nèi)角互補,兩直線平行),
∴∠BFH=∠CDB(兩直線平行,同位角相等);
∵CD⊥AB,
∴∠CDB=90°,
∴∠HFB=90°,
∴HF⊥AB.
點評:熟練掌握平行線的性質(zhì)及判定是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖,已知AC⊥BC,CD⊥AB,DE⊥AC,∠1+∠2=180°,要證HF⊥AB,請完善證明過程,并在括號內(nèi)填上相應依據(jù):
∵AC⊥BC,DE⊥AC,(已知)
∴DE∥BC (在同一平面內(nèi),垂直于同一條直線的兩條直線平行)
∴∠
1
=∠
DCB
兩直線平行,內(nèi)錯角相等

∵∠1+∠2=180° (已知)
∴∠
DCB
+∠
2
=180°
CD
FH
同旁內(nèi)角互補,兩直線平行

∵CD⊥AB(已知)
∴∠CDB=∠HFB=90° (
兩直線平行,同位角相等

∴HF⊥AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•肇慶)如圖,已知AC⊥BC,BD⊥AD,AC與BD交于O,AC=BD.
求證:(1)BC=AD;
(2)△OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AC=BC,∠1=∠2,點D、E分別在CA、CB的延長線上.
求證:CD=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AC⊥BC,CD⊥AB,DE⊥AC,∠1與∠2互補,判斷HF與AB是否垂直,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AC⊥BC,CD⊥AB于點D,AC=5cm,BC=12cm,AB=13cm,那么點B到AC的距離是
12
12
cm.

查看答案和解析>>

同步練習冊答案