【題目】如圖,在平面直角坐標(biāo)系中,圓D與y軸相切于點(diǎn)C(0,4),與x軸相交于A、B兩點(diǎn),且AB=6.

(1)則D點(diǎn)的坐標(biāo)是 ( , ),圓的半徑為;
(2)sin∠ACB=;經(jīng)過(guò)C、A、B三點(diǎn)的拋物線的解析式;
(3)設(shè)拋物線的頂點(diǎn)為F,證明直線FA與圓D相切;
(4)在x軸下方的拋物線上,是否存在一點(diǎn)N,使△CBN面積最大,最大值是多少,并求出N點(diǎn)坐標(biāo).

【答案】
(1)5;4;5
(2);y= x2 x+4
(3)

證明:因?yàn)镈為圓心,A在圓周上,DA=r=5,故只需證明∠DAF=90°,

拋物線頂點(diǎn)坐標(biāo):F(5,﹣ ),DF=4+ = ,AF= = ,

∵DA2+AF2=52+( 2= =( 2=DF2

∴∠DAF=90°

所以AF切于圓D


(4)

解:存在點(diǎn)N,使△CBN面積最大.

根據(jù)點(diǎn)B及點(diǎn)C的坐標(biāo)可得:直線BC的解析式為:y=﹣ x+4,

設(shè)N點(diǎn)坐標(biāo)(a, ),過(guò)點(diǎn)N作NP與y軸平行,交BC于點(diǎn)P,

可得P點(diǎn)坐標(biāo)為(a, ),

則NP= ﹣( )=

故SBCN=SBPN+SPCN= ×PN×OH+ ×PN×BH= PN×BO= ×8×( )=16﹣(a﹣4)2

當(dāng)a=4時(shí),SBCN最大,最大值為16,此時(shí),N(4,﹣2)


【解析】(1)解:連接DC,則DC⊥y軸,

過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,則DE垂直平分AB,
∵AB=6,
∴AE=3,
在Rt△ADE中,AD= = =5,
故可得點(diǎn)D的坐標(biāo)為(5,4),圓的半徑為5;
·(2)解:在Rt△AOC中,AC= = =2
在Rt△BOC中,BC= = =4
∵SABC= AC×BCsin∠ACB= AB×CO,
∴sin∠ACB= =
設(shè)經(jīng)過(guò)點(diǎn)A、B、C三點(diǎn)的拋物線解析式為:y=ax2+bx+c,
將三點(diǎn)坐標(biāo)代入可得: ,
解得:
故經(jīng)過(guò)C、A、B三點(diǎn)的拋物線的解析式為:y= x2 x+4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DE是邊AB的垂直平分線,交ABE、ACD,連接BD

(1)若∠ABC=∠C,∠A=40°,求∠DBC的度數(shù);

(2)若ABAC,且△BCD的周長(zhǎng)為18cm,△ABC的周長(zhǎng)為30cm,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=13,BC=14.

(1)如圖1,AD⊥BC于點(diǎn)D,且BD=5,則△ABC的面積為   

(2)在(1)的條件下,如圖2,點(diǎn)H是線段AC上任意一點(diǎn),分別過(guò)點(diǎn)A,C作直線BH的垂線,垂足為E,F(xiàn),設(shè)BH=x,AE=m,CF=n,請(qǐng)用含x的代數(shù)式表示m+n,并求m+n的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形OABC是菱形,CD⊥x軸,垂足為D,函數(shù) 的圖象經(jīng)過(guò)點(diǎn)C,且與AB交于點(diǎn)E,若OD=2,則△OCE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:

為了緩解北京市西部地區(qū)的交通擁堵現(xiàn)象,市政府決定修建本市的第一條磁浮地鐵線路﹣﹣“S1.該線路連接北京城區(qū)與門(mén)頭溝,西起石門(mén)營(yíng),向東經(jīng)蘋(píng)果園,終點(diǎn)至慈壽寺與6號(hào)線和10號(hào)線相接.為使該工程提前4個(gè)月完成,在保證質(zhì)量的前提下,必須把工作效率提高10%.問(wèn)原計(jì)劃完成這項(xiàng)工程需用多少個(gè)月.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,AB在數(shù)軸上對(duì)應(yīng)的數(shù)分別用a、b表示,且(a﹣20)2+|b+10|=0,P是數(shù)軸上的一個(gè)動(dòng)點(diǎn).

(1)在數(shù)軸上標(biāo)出AB的位置,并求出A、B之間的距離;

(2)已知線段OB上有點(diǎn)C|BC|=6,當(dāng)數(shù)軸上有點(diǎn)P滿(mǎn)足PB=2PC時(shí),求P點(diǎn)對(duì)應(yīng)的數(shù);

(3)動(dòng)點(diǎn)P從原點(diǎn)開(kāi)始第一次向左移動(dòng)1個(gè)單位長(zhǎng)度,第二次向右移動(dòng)3個(gè)單位長(zhǎng)度,第三次向左移動(dòng)5個(gè)單位長(zhǎng)度,第四次向右移動(dòng)7個(gè)單位長(zhǎng)度,…….點(diǎn)P能移動(dòng)到與AB重合的位置嗎?若不能,請(qǐng)直接回答;若能,請(qǐng)直接指出,第幾次移動(dòng),與哪一點(diǎn)重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了能以“更新、更綠、更潔、更寧”的城市形象迎接2011年大運(yùn)會(huì)的召開(kāi),深圳市全面實(shí)施市容市貌環(huán)境提升行動(dòng).某工程隊(duì)承擔(dān)了一段長(zhǎng)為1500米的道路綠化工程,施工時(shí)有兩張綠化方案: 甲方案是綠化1米的道路需要A型花2枝和B型花3枝,成本是22元;
乙方案是綠化1米的道路需要A型花1枝和B型花5枝,成本是25元.
現(xiàn)要求按照乙方案綠化道路的總長(zhǎng)度不能少于按甲方案綠化道路的總長(zhǎng)度的2倍.
(1)求A型花和B型花每枝的成本分別是多少元?
(2)求當(dāng)按甲方案綠化的道路總長(zhǎng)度為多少米時(shí),所需工程的總成本最少?總成本最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9分)如圖是規(guī)格為8×8的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:

(1)在網(wǎng)格中建立平面直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(2,4),B點(diǎn)坐標(biāo)為(4,2);

(2)在第二象限內(nèi)的格點(diǎn)上畫(huà)一點(diǎn)C,使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),則C點(diǎn)坐標(biāo)是________;

(3)ABC的周長(zhǎng)=_________(結(jié)果保留根號(hào));

(4)畫(huà)出ABC關(guān)于關(guān)于y軸對(duì)稱(chēng)的ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)E,過(guò)點(diǎn)E作MN∥BC交AB于M,交AC于N,若BM+CN=9,則線段MN的長(zhǎng)為(
A.6
B.7
C.8
D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案