分母有理化:
2
3
─1
=______.
2
3
─1
=
2(
3
+1)
(
3
-1)(
3
+1)
=
2
3+
+2
2
=
3
+1,
故答案為
3
+1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料,然后回答問(wèn)題.
在進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算時(shí),我們有時(shí)會(huì)碰上如
3
5
,
2
3
,
2
3
+1
一樣的式子,其實(shí)我們還可以將其進(jìn)一步化簡(jiǎn):
3
5
=
5
5
×
5
=
3
5
5
;(一)
2
3
=
2×3
3×3
=
6
3
(二)
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)
2
-12
=
3
-1
(三)
以上這種化簡(jiǎn)的步驟叫做分母有理化.
2
3
+1
還可以用以下方法化簡(jiǎn):
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1
(四)
(1)請(qǐng)用不同的方法化簡(jiǎn)
2
5
+
3

①參照(三)式得
2
5
+
3
=( 。
②參照(四)式得
2
5
+
3
=( 。
(2)化簡(jiǎn):
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

分母有理化:
2
3
+1
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

分母有理化:
2
3
─1
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料,然后回答問(wèn)題.
在進(jìn)行二次根式化簡(jiǎn)時(shí),我們有時(shí)會(huì)碰上如
2
5
,
2
3
,
2
3
+1
一樣的式子,其實(shí)我們還可以將其進(jìn)一步化簡(jiǎn):
2
5
=
5
5
×
5
=
2
5
5
;(一)
2
3
=
2×3
3×3
=
6
3
;(二)
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)2-12
=
3
-1。ㄈ
以上這種化簡(jiǎn)的步驟叫做分母有理化.
2
3
+1
還可以用以下方法化簡(jiǎn):
2
3
+1
=
3-1
3
+1
=
(
3
)2-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1(四)
(1)請(qǐng)用以下指定的方法化簡(jiǎn)
2
2009
+
2007
(2).
參照(三)式化簡(jiǎn)
2
2009
+
2007
;
參照(四)式化簡(jiǎn)
2
2009
+
2007

(2)化簡(jiǎn):
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料,然后回答問(wèn)題.
在進(jìn)行二次根式計(jì)算時(shí),我們有時(shí)會(huì)碰到如
5
3
,
2
3
,
2
3
+1
一樣的式子,其實(shí)我們還可以將其進(jìn)一步簡(jiǎn)化:
5
3
=
3
3
×
3
=
5
3
3
          ①
2
3
=
2×3
3×3
=
6
3
             ②
2
3
+1
=
2(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)
2
-
1
2
 
=
2(
3
-1)
2
=
3
-1
      ③
以上這種化簡(jiǎn)的步驟叫做分母有理化,
2
3
+1
還可以用以下方法化簡(jiǎn):
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
3
-1
     ④
(1)請(qǐng)用不同的方法化簡(jiǎn):
2
7
+
5

參照③式方法化簡(jiǎn)過(guò)程為:
參照④式方法化簡(jiǎn)過(guò)程為:
(2)化簡(jiǎn):
2
3
+1
+
2
5
+
3
+
2
7
+
5
+…+
2
2n+1
+
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案