(2013•遂寧)如圖,△ABC的三個頂點都在5×5的網(wǎng)格(每個小正方形的邊長均為1個單位長度)的格點上,將△ABC繞點B逆時針旋轉到△A′BC′的位置,且點A′、C′仍落在格點上,則圖中陰影部分的面積約是
7.2
7.2
.(π≈3.14,結果精確到0.1)
分析:扇形BAB'的面積減去△BB'C'的面積即可得出陰影部分的面積.
解答:解:由題意可得,AB=BB'=
22+32
=
13
,∠ABB'=90°,
S扇形BAB'=
90π×(
13
)2
360
=
13π
4
,S△BB'C'=
1
2
BC'×B'C'=3,
則S陰影=S扇形BAB'-S△BB'C'=
13π
4
-3≈7.2.
故答案為:7.2.
點評:本題考查了扇形的面積計算,解答本題的關鍵是求出扇形的半徑,及陰影部分面積的表達式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•遂寧)如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于
1
2
MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數(shù)是( 。
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遂寧)如圖,已知四邊形ABCD是平行四邊形,DE⊥AB,DF⊥BC,垂足分別是E、F,并且DE=DF.求證:
(1)△ADE≌△CDF;
(2)四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遂寧)如圖,有一塊含有60°角的直角三角板的兩個頂點放在矩形的對邊上.如果∠1=18°,那么∠2的度數(shù)是
12°
12°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遂寧)如圖,在⊙O中,直徑AB⊥CD,垂足為E,點M在OC上,AM的延長線交⊙O于點G,交過C的直線于F,∠1=∠2,連結CB與DG交于點N.
(1)求證:CF是⊙O的切線;
(2)求證:△ACM∽△DCN;
(3)若點M是CO的中點,⊙O的半徑為4,cos∠BOC=
14
,求BN的長.

查看答案和解析>>

同步練習冊答案