若二次函數(shù)y=-2x2-3x+c的圖象與x軸無交點,則c________.

<-
分析:根據(jù)二次函數(shù)y=-2x2-3x+c的圖象與x軸沒有交點,得出b2-4ac<0,進(jìn)而求出c的取值范圍.
解答:∵二次函數(shù)y=-2x2-3x+c的圖象與x軸沒有交點,
∴b2-4ac=(-3)2-4×c×(-2)=9+8c<0;
∴c<-
點評:考查二次函數(shù)y=ax2+bx+c的圖象與x軸交點的個數(shù)的判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若二次函數(shù)y=-x2+2x-m的圖象的頂點在x軸上,則m=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、若二次函數(shù)y=ax2+2x+a2-4的圖象如圖所示,則a的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正比例函數(shù)y=
32
x
與二次函數(shù)y=-x2+2x+c的圖象都經(jīng)過點A(2,m).
(1)求這個二次函數(shù)的解析式;
(2)求這個二次函數(shù)圖象頂點P的坐標(biāo)和對稱軸;
(3)若二次函數(shù)圖象的對稱軸與正比例函數(shù)的圖象相交于點B,與x軸相交于點C,點Q是x軸的正半軸上的一點,如果△OBC與△OAQ相似,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實數(shù)量,方程總有實數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對稱;
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實數(shù)范圍內(nèi),對于x的同一個值,這兩個函數(shù)所對應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下面的材料再完成下列各題
我們知道,若二次函數(shù)y=ax2+bx+c對任意的實數(shù)x都有y≥0,則必有a>0,△=b2-4ac≤0;例如y=x2+2x+1=(x+1)2≥0,則△=b2-4ac=0,y=x2+2x+2=(x+1)2+1>0,則△=b2-4ac<0.
(1)求證:(a12+a22+…+an2)•(b12+b22+…+bn2)≥(a1•b1+a2•b2+…+an•bn2
(2)若x+2y+3z=6,求x2+y2+z2的最小值;
(3)若2x2+y2+z2=2,求x+y+z的最大值;
(4)指出(2)中x2+y2+z2取最小值時,x,y,z的值(直接寫出答案).

查看答案和解析>>

同步練習(xí)冊答案