已知:如圖,DABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC于點F,交⊙O于點D,DE⊥AB于點E,且交AC于點P,連結(jié)AD.
(1)求證:AP=PD;
(2)請判斷A,D,F(xiàn)三點是否在以P為圓心,以PD為半徑的圓上?并說明理由;
(3)連接CD,若CD﹦3,BD ﹦4,求⊙O的半徑和DE的長.
(1)見解析(2)見解析(3)見解析
解析試題分析:(1)利用等弧對等弦即可證明.
(2)利用等弧所對的圓周角相等,∠BAD=∠CBD再等量代換得出∠DBE=∠DEB,從而證明DB=DE=DC,所以B,E,C三點在以D為圓心,以DB為半徑的圓上.
(3)利用等弧所對的弦相等,得出AD的長度,再根據(jù)勾股定理得出AB的長度,然后得出園的半徑,再根據(jù)相似直角三角形對應對成比例竿出DE的長度.
解:(1)∵BD平分∠CBA,∴∠CBD=∠DBA
∵∠DAC與∠CBD都是弧CD所對的圓周角,∴∠DAC=∠CBD
∴∠DAC =∠DBA ∵AB為直徑, ∴∠ADB=90°
又∵DE⊥AB于點E,∴∠DEB=90°
∴∠ADE +∠EDB=∠ABD +∠EDB=90°
∴∠ADE=∠ABD=∠DAP
∴PD=PA ………………………………………………4分
(2)A,D,F(xiàn)三點在以P為圓心,以PD為半徑的圓上
∵∠DFA +∠DAC=∠ADE +∠PD F=90°且∠ADE=∠DAC
∴∠PDF=∠PFD
∴PD=PF ∴PA=PD= PF
即 A,D,F(xiàn)三點在以P為圓心,以PD為半徑的圓上…………….8分
(3)⊙O的半徑是2.5;DE的長是2.4
考點:確定圓的條件;圓心角、弧、弦的關(guān)系;勾股定理.
點評:本題主要考查等弧對等弦,及確定一個圓的條件,此類題是中考的?碱},需要同學們牢固掌握.
科目:初中數(shù)學 來源: 題型:
已知:如圖,DABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC于點F,交⊙O于點D,DE⊥AB于點E,且交AC于點P,連結(jié)AD.
1.求證:∠DAC =∠DBA;
2.求證:是線段AF的中點
3.若⊙O 的半徑為5,AF =,求tan∠ABF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆江蘇蘇州九年級中考模擬數(shù)學試卷(帶解析) 題型:解答題
已知:如圖,DABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC于點F,交⊙O于點D,DE⊥AB于點E,且交AC于點P,連結(jié)AD.
【小題1】求證:∠DAC =∠DBA;
【小題2】求證:是線段AF的中點
【小題3】若⊙O 的半徑為5,AF = ,求tan∠ABF的值.
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年江蘇蘇州九年級中考模擬數(shù)學試卷(解析版) 題型:解答題
已知:如圖,DABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC于點F,交⊙O于點D,DE⊥AB于點E,且交AC于點P,連結(jié)AD.
1.求證:∠DAC =∠DBA;
2.求證:是線段AF的中點
3.若⊙O 的半徑為5,AF = ,求tan∠ABF的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com