如圖,在矩形ABCD中,AD=6,AB=4,點(diǎn)E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點(diǎn)P是直線EF、GH之間任意一點(diǎn),連接PE、PF、PG、PH,則△PEF和△PGH的面積和等于   
【答案】分析:連接EG,F(xiàn)H,根據(jù)題目數(shù)據(jù)可以證明△AEF與△CGH全等,根據(jù)全等三角形對應(yīng)邊相等可得EF=GH,同理可得EG=FH,然后根據(jù)兩組對邊相等的四邊形是平行四邊形可得四邊形EGHF是平行四邊形,所以△PEF和△PGH的面積和等于平行四邊形EGHF的面積的一半,再利用平行四邊形EGHF的面積等于矩形ABCD的面積減去四周四個(gè)小直角三角形的面積即可求解.
解答:解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,
∴AE=AB-BE=4-1=3,
CH=CD-DH=4-1=3,
∴AE=CH,
在△AEF與△CGH中,
∴△AEF≌△CGH(SAS),
∴EF=GH,
同理可得,△BGE≌△DFH,
∴EG=FH,
∴四邊形EGHF是平行四邊形,
∵△PEF和△PGH的高的和等于點(diǎn)H到直線EF的距離,
∴△PEF和△PGH的面積和=×平行四邊形EGHF的面積,
平行四邊形EGHF的面積
=4×6-×2×3-×1×(6-2)-×2×3-×1×(6-2),
=24-3-2-3-2,
=14,
∴△PEF和△PGH的面積和=×14=7.
故答案為:7.
點(diǎn)評:本題考查了矩形的性質(zhì),平行四邊形的判定與性質(zhì),作出輔助線并證明出四邊形EGHF是平行四邊形是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)B運(yùn)動,點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動,設(shè)經(jīng)過的時(shí)間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點(diǎn)O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線向點(diǎn)D勻速運(yùn)動,到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 D→C→B→A路線向點(diǎn)A勻速運(yùn)動,到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動過程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點(diǎn)H的實(shí)際意義?
(2)求P、Q兩點(diǎn)的運(yùn)動速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(diǎn)(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點(diǎn)F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時(shí),y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時(shí),函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊答案