【題目】如圖,在△ABC中,∠ABC=90°,分別以邊AB、BC、CA向△ABC外作正方形ABHI、正方形BCGF、正方形CAED,連接GD,AG,BD. (提示:正方形的四條邊相等,四個(gè)角均為直角,可直接運(yùn)用。)
(1)如圖1,求證:AG=BD.
(2)如圖2,試說明:S△ABC=S△CDG.
(3)園林小路,曲徑通幽,如圖3所示,小路由白色的正方形大理石和黑色的三角形大理石鋪成,已知中間的所有正方形的面積之和是a平方米,內(nèi)圈的所有三角形的面積之和是b平方米,這條小路一共占地 平方米.(不用寫過程)
【答案】(1)見解析;(2)見解析;(3)a+2b
【解析】試題分析:(1)由正方形的性質(zhì)就可以得出△ACG≌△DCB,就可以得出結(jié)論;
(2)延長DC交GF于H,證明△BMC≌△GNC,就可以得出BM=GN,就可以得出結(jié)論.
(3)同(2)道理知外圈的所有三角形的面積之和等于內(nèi)圈的所有三角形的面積之和,求出這條小路一共占地多少平方米.
試題解析:(1)∵四邊形ABHI、四邊形BCGF和四邊形CAED都是正方形,∴AB=BH=HI=AI,BC=CG=GF=BF,AE=DE=CD=AC,∠H=∠I=∠E=∠F=∠IAB=∠ABH=∠FBC=∠BCG=∠FGC=∠BAC=∠ACD=90°.
∴∠ACD+∠ACB=∠BCG+∠ACB,
∴∠DCB=∠ACG.
在△ACG和△DCB中,
,
∴△ACG≌△DCB(SAS),
∴AG=BD;
(2)如圖,作BM⊥AC于M,GN⊥DC的延長于點(diǎn)N.
∴∠BMC=∠N=90°
∵∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3.
在△BMC和△GNC中,
,
∴△BMC≌△GNC(AAS),
∴BM=GN,
∴ACBM=DCGN,
∵S△ABC=ACBM,S△DCG=DCGN,
∴S△ABC=S△CDG.
(3)由(2)知外圈的所有三角形的面積之和等于內(nèi)圈的所有三角形的面積之和。
∴這條小路的面積為(a+2b)平方米。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第一宇宙速度約為7919.5959493米/秒,將它保留兩個(gè)有效數(shù)字后的近似數(shù)是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市出租車收費(fèi)標(biāo)準(zhǔn)是:起步價(jià)為8元,3千米后每千米為2元,若某人乘坐了x(x>5)千米.
(1)用含x的代數(shù)式表示他應(yīng)支付的車費(fèi).
(2)行駛30千米,應(yīng)付多少錢?
(3)若他支付了46元,你能算出他乘坐的路程嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司今年如果用原線下銷售方式銷售一產(chǎn)品,每月的銷售額可達(dá)100萬元.由于該產(chǎn)品供不應(yīng)求,公司計(jì)劃于3月份開始全部改為線上銷售,這樣,預(yù)計(jì)今年每月的銷售額y(萬元)與月份x(月)之間的函數(shù)關(guān)系的圖象如圖1中的點(diǎn)狀圖所示(5月及以后每月的銷售額都相同),而經(jīng)銷成本p(萬元)與銷售額y(萬元)之間函數(shù)關(guān)系的圖象圖2中線段AB所示.
(1)求經(jīng)銷成本p(萬元)與銷售額y(萬元)之間的函數(shù)關(guān)系式;
(2)分別求該公司3月,4月的利潤;
(3)問:把3月作為第一個(gè)月開始往后算,最早到第幾個(gè)月止,該公司改用線上銷售后所獲得利潤總額比同期用線下方式銷售所能獲得的利潤總額至少多出200萬元?(利潤=銷售額﹣經(jīng)銷成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2012年12月13日,嫦娥二號(hào)成功飛抵距地球約700萬公里遠(yuǎn)的深空,7 000 000用科學(xué)記數(shù)法表示為( )
A.7×105
B.7×106
C.70×106
D.7×107
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx﹣k的圖象的交點(diǎn)坐標(biāo)為A(m,2).
(1)求m的值和一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)y=kx﹣k的圖象與y軸交于點(diǎn)B,求△AOB的面積;
(3)直接寫出使函數(shù)y=kx﹣k的值大于函數(shù)y=x的值的自變量x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com