如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線(xiàn)CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
分析:(1)取AB的中點(diǎn)H,連接EH,根據(jù)已知及正方形的性質(zhì)利用ASA判定△AHE≌△ECF,從而得到AE=EF;
(2)成立,在AB上取BH=BE,連接EH,根據(jù)已知及正方形的性質(zhì)利用ASA判定△AHE≌△ECF,從而得到AE=EF.
解答:(1)證明:取AB的中點(diǎn)H,連接EH;
∵四邊形ABCD是正方形,
AE⊥EF;
∴∠1+∠AEB=90°,
∠2+∠AEB=90°
∴∠1=∠2,
∵BH=BE,∠BHE=45°,
且∠FCG=45°,
∴∠AHE=∠ECF=135°,AH=CE,
∴△AHE≌△ECF,
∴AE=EF;

(2)解:成立.
證明:在AB上取BH=BE,連接EH,
∵四邊形ABCD為正方形,
∴AB=BC,
∵BE=BH,
∴AH=EC,
∵∠1=∠2,∠AHE=∠ECF=135°,
∴△AHE≌△ECF,
∴AE=EF.
點(diǎn)評(píng):此題考查學(xué)生對(duì)正方形的性質(zhì)及全等三角形判定的理解及運(yùn)用,難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線(xiàn)AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線(xiàn)、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線(xiàn)AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線(xiàn)交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線(xiàn)上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案