矩形紙片ABCD中,AB=5,AD=4,將紙片折疊,使點(diǎn)B落在邊CD上的B′處,折痕為AE.在折痕AE上存在一點(diǎn)P到邊CD的距離與到點(diǎn)B的距離相等,則此相等距離為


  1. A.
    1.5
  2. B.
    2.5
  3. C.
    3
  4. D.
    2
B
分析:先根據(jù)題意畫出圖形,由翻折變換的性質(zhì)得出F、B′重合,分別延長(zhǎng)AE,DC相交于點(diǎn)G,由平行線的性質(zhì)可得出GB′=AB′=AB=5,再根據(jù)相似三角形的判定定理得出△ADG∽△PB′G,求出其相似比,進(jìn)而可求出答案.
解答:解:如圖所示,設(shè)PF⊥CD,
∵BP=FP,
由翻折變換的性質(zhì)可得BP=B′P,
∴FP=B′P,
∴FP⊥CD,
∴B′,F(xiàn),P三點(diǎn)構(gòu)不成三角形,
∴F,B′重合分別延長(zhǎng)AE,DC相交于點(diǎn)G,
∵AB平行于CD,
∴∠BAG=∠AGC,
∵∠BAG=∠B′AG,AGC=∠B′AG,
∴GB′=AB′=AB=5,
∵PB′(PF)⊥CD,
∴PB′∥AD,
∴△ADG∽△PB′G,
∵Rt△ADB′中,AB′=5,AD=4,
∴DB′=3,DG=DB′+B′G=3+5=8,
∴△ADG與△PB′G的相似比為8:5,
∴AD:PB′=8:5,
∵AD=4,
∴PB′=2.5,即相等距離為2.5.
故選B.
點(diǎn)評(píng):本題考查的是圖形翻折變換的性質(zhì)及相似三角形的判定與性質(zhì),根據(jù)題意畫出圖形,作出輔助線,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=3cm,BC=4cm,若要在該紙片中剪下兩個(gè)外切的圓⊙O1和⊙O2,要求⊙O1和⊙O2的圓心均在對(duì)角線BD上,且⊙O1和⊙O2分別與BC、AD相切,則O1O2的長(zhǎng)為( 。
A、
5
3
cm
B、
5
2
cm
C、
15
8
cm
D、2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形紙片ABCD中,AD=9,AB=3,將其折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,那么折痕EF的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形紙片ABCD中,將矩形紙片沿著對(duì)角線AC折疊,使點(diǎn)D落在點(diǎn)F處,設(shè)AF與BC相交于點(diǎn)E.
(1)試說明△ABE≌△CFE;(2)若AB=6,AD=8,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,矩形紙片ABCD中,AD=14cm,AB=10cm.
(1)將矩形紙片ABCD沿折線AE對(duì)折,使AB邊與AD邊重合,B點(diǎn)落在F點(diǎn)處,如圖②所示,再剪去四邊形CEFD,余下部分如圖③所示,若將余下的紙片展開,則所得的四邊形ABEF的形狀是
 
,它的面積為
 
cm2;
(2)將圖③中的紙片沿折線AG對(duì)折,使AF與AE邊重合,F(xiàn)點(diǎn)落在H點(diǎn)處.如圖④所示,再沿HG將△HGE剪下,余下的部分如圖⑤所示,把圖⑤的紙片完全展開,請(qǐng)你在圖⑥的矩形ABCD中畫出展開后圖形的示意圖,剪去的部分用陰影表示,折痕用虛線表示;
(3)求圖④中剪去的△HGE的展開圖的面積(結(jié)果用含有根式的式子表示).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍巖)如圖①,在矩形紙片ABCD中,AB=
3
+1,AD=
3

(1)如圖②,將矩形紙片向上方翻折,使點(diǎn)D恰好落在AB邊上的D′處,壓平折痕交CD于點(diǎn)E,則折痕AE的長(zhǎng)為
6
6
;
(2)如圖③,再將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,B′C′交AE于點(diǎn)F,則四邊形B′FED′的面積為
3
-
1
2
3
-
1
2
;
(3)如圖④,將圖②中的△AED′繞點(diǎn)E順時(shí)針旋轉(zhuǎn)α角,得△A′ED″,使得EA′恰好經(jīng)過頂點(diǎn)B,求弧D′D″的長(zhǎng).(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊(cè)答案