【題目】如圖,在△ABC中,D是BC邊上的點(不與點B、C重合),連結(jié)AD.
問題引入:
(1)如圖①,當點D是BC邊上的中點時,S△ABD:S△ABC= ;當點D是BC邊上任意一點時,S△ABD:S△ABC= (用圖中已有線段表示).
探索研究:
(2)如圖②,在△ABC中,O點是線段AD上一點(不與點A、D重合),連結(jié)BO、CO,試猜想S△BOC與S△ABC之比應(yīng)該等于圖中哪兩條線段之比,并說明理由.
拓展應(yīng)用:
(3)如圖③,O是線段AD上一點(不與點A、D重合),連結(jié)BO并延長交AC于點F,連結(jié)CO并延長交AB于點E,試猜想的值,并說明理由.
【答案】(1)1:2,BD:BC;
(2)S△BOC:S△ABC=OD:AD,理由見解析;
(3)=1,理由見解析.
【解析】
試題分析:(1)根據(jù)三角形的面積公式,兩三角形等高時,可得兩三角形底與面積的關(guān)系,可得答案;
(2)根據(jù)三角形的面積公式,兩三角形等底時,可得兩三角形的高與面積的關(guān)系,可得答案;
(3)根據(jù)三角形的面積公式,兩三角形等底時,可得兩三角形的高與面積的關(guān)系,再根據(jù)分式的加減,可得答案.
試題解析:(1)如圖①,當點D是BC邊上的中點時,S△ABD:S△ABC=1:2;當點D是BC邊上任意一點時,S△ABD:S△ABC=BD:BC,
故答案為:1:2,BD:BC;
(2)S△BOC:S△ABC=OD:AD,
如圖②作OE⊥BC與E,作AF⊥BC與F,,
∵OE∥AF,
∴△OED∽△AFD,
∴.
∵,
∴;
(3)=1,理由如下:
由(2)得,,.
∴===1.
.
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1,AM∥CN,點 B 為平面內(nèi)一點,AB⊥BC 于 B,過 B 作 BD⊥ AM.
(1)求證:∠ABD=∠C;
(2)如圖 2,在(1)問的條件下,分別作∠ABD、∠DBC 的平分線交 DM 于 E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,
①求證:∠ABF=∠AFB;
②求∠CBE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把正整數(shù)1,2,3,4,…排列成如圖所示的一個表.
(1)用一正方形在表中隨意框住4個數(shù),把其中最大的數(shù)記為x,另三個數(shù)用含x的式子表示出來,從大到小依次是 , , ;
(2)在(1)的前提下,當被框住的4個數(shù)之和等于984時,x位于該表的第幾行第幾列?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年5月,某縣突降暴雨,造成山體滑坡,橋梁垮塌,房屋大面積受損,該省民政廳急需將一批帳篷送往災(zāi)區(qū).現(xiàn)有甲、乙兩種貨車,已知甲種貨車比乙種貨車每輛車多裝20件帳篷,且甲種貨車裝運1 000件帳篷與乙種貨車裝運800件帳篷所用車輛相等.
(1)求甲、乙兩種貨車每輛車可裝多少件帳篷;
(2)如果這批帳篷有1 490件,用甲、乙兩種汽車共16輛裝運,甲種車輛剛好裝滿,乙種車輛最后一輛只裝了50件,其余裝滿,求甲、乙兩種貨車各有多少輛.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=120°,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了解本校學生對球類運動的愛好情況,采用抽樣的方法,從乒乓球、羽毛球、籃球和排球四個方面調(diào)查了若干名學生,在還沒有繪制成功的“折線統(tǒng)計圖”與“扇形統(tǒng)計圖”中,請你根據(jù)已提供的部分信息解答下列問題.
(1)在這次調(diào)查活動中,一共調(diào)查了 名學生,并請補全統(tǒng)計圖.
(2)“羽毛球”所在的扇形的圓心角是 度.
(3)若該校有學生1200名,估計愛好乒乓球運動的約有多少名學生?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐上,且點A(0,2),點C(,0),如圖所示:拋物線經(jīng)過點B。
(1)求點B的坐標;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com