(2006•深圳)如圖,王華晚上由路燈A下的B處走到C處時(shí),測得影子CD的長為1米,繼續(xù)往前走3米到達(dá)E處時(shí),測得影子EF的長為2米,已知王華的身高是1.5米,那么路燈A的高度AB等于如圖,王華晚上由路燈A下的B處走到C處時(shí),測得影子CD的長為1米,繼續(xù)往前走3米到達(dá)E處時(shí),測得影子EF的長為2米,已知王華的身高是1.5米,那么路燈A的高度AB等于( )

A.4.5米
B.6米
C.7.2米
D.8米
【答案】分析:由于人和地面是垂直的,即和路燈到地面的垂線平行,構(gòu)成兩組相似.根據(jù)對(duì)應(yīng)邊成比例,列方程解答即可.
解答:解:如圖,GC⊥BC,AB⊥BC,
∴GC∥AB,
∴△GCD∽△ABD(兩個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形相似),
,
設(shè)BC=x,則,
同理,得,
,
∴x=3,

∴AB=6.
故選B.
點(diǎn)評(píng):本題考查相似三角形性質(zhì)的應(yīng)用.在解答相似三角形的有關(guān)問題時(shí),遇到有公共邊的兩對(duì)相似三角形,往往會(huì)用到中介比,它是解題的橋梁,如該題中的“”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•深圳)如圖,拋物線y=ax2-8ax+12a(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線上另有一點(diǎn)C在第一象限,滿足∠ACB為直角,且恰使△OCA∽△OBC.
(1)求線段OC的長;
(2)求該拋物線的函數(shù)關(guān)系式;
(3)在x軸上是否存在點(diǎn)P,使△BCP為等腰三角形?若存在,求出所有符合條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•深圳)如圖,拋物線y=ax2-8ax+12a(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線上另有一點(diǎn)C在第一象限,滿足∠ACB為直角,且恰使△OCA∽△OBC.
(1)求線段OC的長;
(2)求該拋物線的函數(shù)關(guān)系式;
(3)在x軸上是否存在點(diǎn)P,使△BCP為等腰三角形?若存在,求出所有符合條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•深圳)如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)M在x軸的正半軸上,⊙M交x軸于A、B兩點(diǎn),交y軸于C、D兩點(diǎn),且C為的中點(diǎn),AE交y軸于G點(diǎn),若點(diǎn)A的坐標(biāo)為(-2,0),AE=8.

(1)求點(diǎn)C的坐標(biāo);
(2)連接MG、BC,求證:MG∥BC;
(3)如圖2,過點(diǎn)D作⊙M的切線,交x軸于點(diǎn)P.動(dòng)點(diǎn)F在⊙M的圓周上運(yùn)動(dòng)時(shí),的比值是否發(fā)生變化?若不變,求出比值;若變化,說明變化規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•深圳)如圖,在梯形ABCD中,AD∥BC,AB=DC=AD,∠ADC=120°.
(1)求證:BD⊥DC;
(2)若AB=4,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•深圳)如圖所示,圓柱的俯視圖是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案